Bio Break: Addressing Shear in Drug Delivery Device Design

Resources

Bio Break: Addressing Shear in Drug Delivery Device Design

Topic: Bio Break

In this episode of Bio Break, Joris van der Heijden and Nick Allan explore one of the most critical challenges in drug delivery device design: shear stress. When designing systems for biologics and gene therapies, avoiding shear stress is essential to ensure the viability and activity of biomolecules like proteins, antibodies, and viruses.

Joris provides a comprehensive explanation of shear, defining it as the pressure and force that can disrupt or inactivate sensitive biomolecules during fluid transport. Whether caused by abrupt fluid path changes, bubbles, or high-friction pumps, shear poses a significant risk to the efficacy of advanced therapies.

Key Takeaways from the Episode

  • Understanding Shear Stress: Shear occurs when fluid is forced through abrupt changes in its path or exposed to uncontrolled movement. For biologics, shear can lead to molecule clustering or inactivation, rendering treatments ineffective.
  • Design Solutions to Reduce Shear:
    • Optimize Fluid Pathways: Use simulation tools like computational fluid dynamics (CFD) to identify and eliminate areas with abrupt fluid movement. Rounded pathways and smoother transitions help minimize turbulence and pressure.
    • Low-Shear Pumps: Select pumps specifically designed to handle biomolecules gently, preserving their activity and integrity.
  • Testing for Success: After designing a low-shear system, functional testing is critical. For example:
    • Measure the viability of cells after passing through the device.
    • Verify that antibodies, viruses, or other biomolecules remain active and effective post-delivery.

By addressing shear stress during the design phase, drug delivery devices can ensure biologics reach their target intact and active, maximizing therapeutic impact. For developers working with advanced therapies like gene therapy products, these design principles are essential to delivering cutting-edge care to patients.

This episode is a must-watch for engineers, product designers, and healthcare innovators seeking to tackle the complexities of drug delivery systems. Learn actionable strategies to refine your designs and improve the outcomes of sensitive therapeutics.

Addressing Shear in Drug Delivery Device Design

A promotional graphic with bold text reading "Vision Surgery with a Tooth" in purple and black letters. Below the text is a large 3D image of a tooth and a purple plus sign. On the right side, a woman is undergoing an eye exam using a slit lamp microscope.

In this episode of Bio Break, Nick and Joris dive into one of the most astonishing—and real—medical innovations we’ve ever come across: osteo-odonto-keratoprosthesis. Or, as Nick quickly dubs it, “tooth in eye surgery.”

Crushed plastic granules for recycling. Plastic crusher. Recycled plastic with mixed colors. The concept of recycled plastic used

For Earth Day 2025, we asked our employees to share medtech recycling and innovation opportunities and obstacles.  We invite everyone in medical device development and healthcare to unite behind medtech recycling and innovation. 

An individual lies back with eyes open as a drop of eye medication falls from a dropper, highlighting the process of vision care.

The human eye is an extremely delicate organ, often prone to irritation, dryness and various diseases, such as glaucoma, cataracts, keratoconus, age-related macular degeneration, and many others. These ocular clinical conditions also affect patients’ quality of life.

A Caucasian girl in her 20s or 30s undergoes transcranial magnetic stimulation therapy at a psychiatric facility to treat depression or anxiety.

Exploration of drug-device combination therapies that are transforming the treatment of Parkinson’s, epilepsy, depression, and brain cancer.