Bio Break: Surprising Innovations in Olfactory Drug Delivery

Resources

Bio Break: Surprising Innovations in Olfactory Drug Delivery

Topic: Bio Break

In this episode of Bio Break, Joris van der Heijden and Nick Allan explore one of the most innovative approaches in drug delivery: olfactory drug delivery. This cutting-edge method targets the olfactory region of the nose, offering a direct pathway to deliver drugs into the brain while bypassing the blood-brain barrier. Unlike traditional intranasal delivery, this highly specialized technique uses neural pathways to achieve precise and effective results.

Nick shares insights from a fascinating project that leverages the olfactory bulb and cribriform plate—a thin, porous structure within the skull—to transport therapeutic agents directly to the brain. These pathways allow drugs to reach the brain without systemic circulation, overcoming the challenges of the blood-brain barrier that typically blocks most substances.

The discussion also delves into the complexity of nasal anatomy, highlighting the natural defenses that prevent substances from entering the brain. Structures like the nasal valve and turbinates serve critical roles in filtering air and protecting the body, but they also pose significant challenges for targeted drug delivery. Through precise engineering and careful design, the device Nick describes achieves a delicate balance of usability and effectiveness, allowing for safe and accurate drug delivery to the olfactory region.

This approach is especially promising for conditions like Alzheimer’s, Parkinson’s, brain tumors, and other neurological diseases that require direct access to the brain for treatment. By bypassing traditional barriers, olfactory drug delivery opens new opportunities for targeted therapies that were previously inaccessible.

This episode is a must-watch for medical device developers, pharmaceutical innovators, and healthcare professionals interested in the latest advancements in drug delivery technology. Gain insights into how precision engineering and biological understanding can come together to solve complex challenges and unlock groundbreaking treatments for patients.

Surprising Innovations in Olfactory Drug Delivery

A laboratory or engineering workstation featuring a high-precision stereo microscope mounted on an articulated arm, positioned beside two computer monitors displaying 3D CAD models or imaging of a complex mechanical or biomedical device. The workspace also includes a keyboard, mouse, and a metallic container, all situated on a clean white desk in a dimly lit, modern lab environment.

In a sophisticated world of ever increasing complexity, we need our tools to evolve alongside us and assist in complex decision making, allowing us to understand the consequences of choices ahead. Computational Modelling and Simulation (CM&S) is emerging as an essential tool in building evidence for medical device development.

Three engineers are assembling or troubleshooting a large industrial or medical device prototype in a workshop. One person is seated in a wheelchair, another is standing behind the structure, and a third is kneeling on top of the machine for internal access. The workspace includes tools, laptops, electronic parts, and a large diagram of the device on the wall.

I routinely engage in the development of prototype medical devices. These prototypes typically incorporate at least one printed circuit board (PCB) installed within a plastic or metal enclosure, featuring numerous connections to external components through various connectors.

A laptop on a wooden desk displays a digital document icon on its screen. Beside it, bold text reads "Design History Files Explained," highlighting the topic of regulatory documentation in medical device development.

Nick and Joris break down what a DHF is, why it’s required, and how it plays a vital role throughout the development lifecycle.

Two colorful paper boats—one red and one yellow—float on a blue background with illustrated white waves beneath them. Bold text reads "From Idea to Impact," symbolizing innovation and progress in medical device development.

Nick Allan and Joris van der Heijden revisit one of StarFish Medical’s most successful Pathfinder journeys, showcasing how a bold research concept evolved into a fully realized clinical diagnostic device.