Bio Break: Tooth-In-Eye Surgery

Resources

Bio Break: Tooth-In-Eye Surgery

Sector: Surgical
Topic: Bio Break

In this episode of Bio Break, Nick Allan and Joris van der Heijden dive into one of the most astonishing medical innovations we’ve ever come across: osteo-odonto-keratoprosthesis. Or, as Nick quickly dubs it, “tooth in eye surgery.”

This fascinating procedure sounds like science fiction but has been successfully used to restore vision in people who are blind due to damage in the front part of the eye, such as from trauma or autoimmune diseases. While the retina remains functional, traditional options are off the table. That’s where this extreme innovation comes in.

Joris explains how the procedure starts with removing a patient’s tooth and some surrounding bone to create a small square-shaped structure. A hole is drilled in the center, and a tiny lens is implanted, this piece will eventually act as an artificial cornea. But before it’s implanted into the eye, it needs to be biologically prepared. That’s done by temporarily placing the implant into the patient’s cheek, where it can become vascularized over a few months.

Once ready, the patient returns to the hospital for the second stage. Surgeons retrieve the now-living implant from the cheek and carefully insert it into the eye, replacing the damaged corneal area. Thanks to the previously grafted oral tissue, the eye is prepped to accept the implant, and the result is stunning: restored vision in up to 90% of patients.

Even more impressive? Around 50% of these individuals gain high-quality vision, enough to read or even consider driving.

Whether you’re a medtech enthusiast or just love mind-blowing medical stories, this episode is a must-watch. Learn how combining dental tissue, ocular surgery, and a bit of clever biology can give people their sight back.

Tooth-In-Eye Surgery

Engineer presenting a 3D CAD model during a design review meeting at StarFish Medical.

A structured, well-documented design review process is a critical component of successful product development, particularly in the medical device industry.

Project manager using digital tablet to update cloud-based Gantt chart for medical device development planning.

In medical device development, we deal with complex projects that span multiple disciplines, timelines, and regulatory gates. It’s a constant balance between moving fast enough to innovate, but slow enough to stay compliant.

Sterilizing medical devices using various FDA-approved methods - Image showing three medical-related items—a pulse oximeter, surgical scissors, and a catheter with a Luer lock—on a light background. A bold label at the top reads ‘How to sterilize?’ with an arrow pointing to the pulse oximeter, indicating a question about sterilization methods for these devices.

Ariana and Mark walk through FDA-approved options and explain how to select the right one for your product. From metals to plastics and electronics, not all devices can handle the same process.

X-ray image showing two human knees side-by-side. The right knee appears intact with natural bone structure, while the left knee has a visible knee replacement implant, including metallic components. A bold caption in the upper center reads "Bone or not?" and a red curved arrow points from the text to the knee with the implant, emphasizing the contrast between natural bone and artificial joint.

In this episode of MedDevice by Design, Ariana and Mark dive into the biomechanics and materials science behind osseointegration for implants.