Bio Break: How to Ensure Targeted Drug Delivery Hits the Right Spot

Resources

Bio Break: How to Ensure Targeted Drug Delivery Hits the Right Spot

Topic: Bio Break

In this episode of Bio Break, Nick Allan and Joris van der Heijden tackle the fascinating challenge of targeted drug delivery. When administering drugs to specific areas in the body, how can we be certain they reach the intended target? Nick shares an exciting example involving an intranasal device designed to deliver drugs precisely to the olfactory cleft—an area located between the eyes.

From initial bench modeling with plastic nose prototypes to sophisticated human trials, the episode breaks down the multi-step process used to confirm drug deposition. Learn how techniques like using food coloring on prototypes and delivering radiotracer technetium-99 for imaging helped refine their approach. Nick dives into the advanced use of CT scans and radioactivity mapping, followed by real-world testing with medical-grade methylene blue and ENT scope visualization.

The team showcases how the integration of engineering, human trials, and medical-grade testing leads to reliable results in targeted delivery systems. Discover why these detailed studies are crucial for verifying that drugs reach their destination, ensuring safety and effectiveness.

Whether you’re a medical professional, device developer, or simply intrigued by how cutting-edge drug delivery works, this episode offers insights into the science and technology behind targeted solutions.

Key Topics Covered:

  • Real-world examples of ensuring precision drug delivery
  • Targeted drug delivery to the olfactory cleft
  • Using radiotracers like technetium-99 in imaging trials
  • Employing methylene blue for visible deposition tracking
  • Challenges and solutions in intranasal device testing

How to Ensure Targeted Drug Delivery Hits the Right Spot

Illustration of a house with a green checkmark beside a hospital with a red X. Text above reads "Prevent the Hospital?" in bold black and purple lettering, highlighting the concept of avoiding hospitalization through preventative healthcare.

In this episode of Bio Break, Nick Allan and Joris van der Heijden explore a critical but often overlooked topic in healthcare innovation: prevention. While most conversations about medical devices revolve around treatment, the duo shifts the focus to technologies that help people avoid hospitalization altogether. Preventive medical devices and diagnostic tools are quietly transforming healthcare by catching diseases earlier and reducing the need for invasive procedures.

A laboratory scene featuring a glass Erlenmeyer flask filled with bright green liquid placed on a table against a dark background. Bold text on the left reads, “He drank Bacteria!?” in large gray and purple letters, adding a sense of curiosity and intrigue.

In this episode of Bio Break, Nick shares one of his favorite discoveries in the world of infectious disease research — the groundbreaking discovery of Helicobacter pylori and its role in causing peptic ulcers. This fascinating story showcases how persistence, scientific curiosity, and innovative thinking can lead to discoveries that reshape medical science.

A close-up image of a hand drawing on a whiteboard with a marker, illustrating a brainstorming or planning session. Bold text on the left reads 'Cost to develop Medical Device' with the word 'develop' highlighted in purple. The image conveys the concept of medical device development costs and design planning.

What are the real costs of developing a medical device? In this episode of Bio Break, Nick and Joris dive into one of the most frequently asked questions they hear from clients: How much does it cost to develop a medical device?

A futuristic smartwatch displaying biometric data on its screen, set against a glowing blue background with abstract graphs. Bold text reads "Where's my Cortisol-Sensing Watch?" in a mix of grey, purple, and black fonts.

Nick and Joris tackle a question many tech and health enthusiasts have wondered for years: Where is my cortisol-sensing smartwatch? Nick shares a nostalgic story of reading about futuristic wearable technology in Popular Mechanics as a child — devices that would one day monitor biomarkers like cortisol to track stress and overall health. Now, decades later, he and Joris break down why such a wearable device still hasn’t become a reality.