
Bio Break: How Nature-Inspired Biosensors Are Revolutionizing Medical Devices
In this episode of Bio Break, Nick and Joris dive into the fascinating realm of biosensors, showcasing how nature’s biological processes inspire groundbreaking innovations in medical device technology. From jellyfish to fireflies, the natural world has provided invaluable tools that are transforming diagnostics and research.
The discussion kicks off with green fluorescent protein (GFP), a revolutionary biosensor derived from jellyfish. Discovered in the 1960s and popularized in the 1990s, GFP earned its place in history with a Nobel Prize. This remarkable protein fluoresces when exposed to specific wavelengths of light, enabling scientists to monitor cellular activities. GFP has become an indispensable tool for tracking cellular processes, from observing metabolic activities to measuring changes in pH levels. Joris shares an example from his PhD research, where he utilized a modified GFP to measure the redox state of cells, highlighting the protein’s adaptability and utility.
The conversation shifts to luminescence, drawing inspiration from fireflies and their ability to emit light through biochemical reactions. This phenomenon, known as bioluminescence, has been harnessed in medical research to create biosensors that can emit light when specific chemical reactions occur. Joris discusses how luminescent molecules, such as luciferase, have played pivotal roles in cancer research and diagnostics. A newer innovation, NanoLuc, inspired by deep-sea shrimp, has taken luminescence to the next level with its smaller, brighter design, enabling more efficient and precise applications.
This episode highlights how the interplay of biology and engineering continues to unlock new possibilities in diagnostics and medical devices. By mimicking nature’s ingenuity, biosensors are paving the way for non-invasive, accurate, and efficient tools for understanding and monitoring health.
How Nature-Inspired Biosensors Are Revolutionizing Medical Devices
Related Resources

Nick and Joris dive into the fascinating world of freeze-drying, exploring how this process extends shelf life and maintains the integrity of various products—including reagents used in in vitro diagnostics and even instant coffee!

In this episode of Bio Break, Nick and Joris discuss the fascinating world of real-time imaging for targeted drug delivery. When delivering drugs to precise locations in the body, how do we ensure they reach the right spot? The answer lies in medical imaging technologies such as MRI, CT, and ultrasound, which play a crucial role in guiding complex drug delivery devices.

Nick and Joris explore the fascinating world of repurposing existing medical device technologies for new market sectors. As engineers and innovators, we often focus on creating brand-new solutions, but what about leveraging tried-and-true technologies to expand into untapped markets? This strategy not only opens doors to new revenue streams but also maximizes the potential of existing innovations.

In this episode of Bio Break, Nick Allan and Joris van der Heijden tackle the fascinating challenge of targeted drug delivery. When administering drugs to specific areas in the body, how can we be certain they reach the intended target? Nick shares an exciting example involving an intranasal device designed to deliver drugs precisely to the olfactory cleft—an area located between the eyes.