
Bio Break: How to Ensure Targeted Drug Delivery Hits the Right Spot
In this episode of Bio Break, Nick Allan and Joris van der Heijden tackle the fascinating challenge of targeted drug delivery. When administering drugs to specific areas in the body, how can we be certain they reach the intended target? Nick shares an exciting example involving an intranasal device designed to deliver drugs precisely to the olfactory cleft—an area located between the eyes.
From initial bench modeling with plastic nose prototypes to sophisticated human trials, the episode breaks down the multi-step process used to confirm drug deposition. Learn how techniques like using food coloring on prototypes and delivering radiotracer technetium-99 for imaging helped refine their approach. Nick dives into the advanced use of CT scans and radioactivity mapping, followed by real-world testing with medical-grade methylene blue and ENT scope visualization.
The team showcases how the integration of engineering, human trials, and medical-grade testing leads to reliable results in targeted delivery systems. Discover why these detailed studies are crucial for verifying that drugs reach their destination, ensuring safety and effectiveness.
Whether you’re a medical professional, device developer, or simply intrigued by how cutting-edge drug delivery works, this episode offers insights into the science and technology behind targeted solutions.
Key Topics Covered:
- Real-world examples of ensuring precision drug delivery
- Targeted drug delivery to the olfactory cleft
- Using radiotracers like technetium-99 in imaging trials
- Employing methylene blue for visible deposition tracking
- Challenges and solutions in intranasal device testing
How to Ensure Targeted Drug Delivery Hits the Right Spot
Related Resources

Nick and Joris tackle a question many tech and health enthusiasts have wondered for years: Where is my cortisol-sensing smartwatch? Nick shares a nostalgic story of reading about futuristic wearable technology in Popular Mechanics as a child — devices that would one day monitor biomarkers like cortisol to track stress and overall health. Now, decades later, he and Joris break down why such a wearable device still hasn’t become a reality.

We all know medical devices have labels, but how often do we consider their purpose and the effort required to ensure they provide the right information? Device labelling serves as the interface between the manufacturer, the user, and regulatory bodies. (Note that being from Canada, we spell labelling with two Ls.)

Sterilization is a critical process in the medical device industry as it provides a reliable way to ensure that devices are free from harmful microorganisms when they are used on patients. This blog talks about the categories of sterilization currently used on medical devices in manufacturing settings. It also addresses concerns surrounding the use of ethylene oxide (EtO), an indispensable method for sterilizing heat and moisture sensitive devices.

Predicting the trends of a new year is always interesting and a bit unpredictable. We asked our medical device design and development professionals to submit their most interesting medtech trends for 2025 and the reasoning behind their prediction. The results were surprisingly focused on two major trends: Home Healthcare and Wearable Devices. Within these categories, several technologies were identified including edge computing, IoT, and connected devices. In no particular ranking, here are our 2025 predictions: