Bio Break: Understanding Limit of Detection and Limit of Quantification in Assay Development

Resources

Bio Break: Understanding Limit of Detection and Limit of Quantification in Assay Development

Sector: Diagnostics
Topic: Bio Break

Dive into the world of assay development with this informative episode of Bio Break, where Nick and Joris explore two critical concepts: Limit of Detection (LOD) and Limit of Quantification (LOQ). These terms might sound similar, but their implications for clinical diagnostics and medical devices are vastly different. Whether you’re an engineer, researcher, or product developer, this video sheds light on why both LOD and LOQ are vital in ensuring the precision and reliability of diagnostic tests.

Nick breaks down these acronyms, explaining how LOD refers to analytical sensitivity — essentially, how low your system can detect an analyte. Meanwhile, LOQ focuses on functional sensitivity, or how well the assay performs in real-world applications, considering variables like user handling, reagents, and diverse physiological conditions. With real-world examples, this discussion highlights the importance of understanding these thresholds to create accurate and effective diagnostic tools.

In this episode, learn about the rule of thumb engineers use to determine these limits: aiming for three standard deviations above the detection limit for LOD and a robust ten standard deviations for LOQ to ensure consistent results in practical settings. From engineering perspectives to real-world applications, Nick and Joris share insights that bridge the gap between theory and practice in assay development.

If you’re navigating the complexities of medical device or diagnostic development, this episode is a must-watch! With a focus on how engineering and functionality intersect in LOD and LOQ testing, you’ll gain actionable insights for your projects.

Key topics covered:

  • What LOD and LOQ mean for assay development.
  • Differences between analytical and functional sensitivity.
  • The importance of statistical thresholds in diagnostic reliability.

Don’t miss out—watch now to elevate your understanding of assay performance metrics!

Understanding LOD and LOQ in Assay Development

YouTube video thumbnail
A vial of orange liquid with a radiation symbol and a syringe sit on a reflective metal surface in front of a large medical imaging machine. The overlay text reads: "Radioactive. On Purpose?" in bold black font on a white rounded background.

Radiopharmaceutical device development is gaining momentum as medical teams explore new frontiers in diagnostic imaging and cancer treatment.

A gloved hand holds a COVID-19 lateral flow test in front of a white bathroom sink and tiled wall. Overlay text reads: ‘From ELISA to DIY?’ in bold white font on a black background.

Nick Allan and Nigel Syrotuck reflect on recent ADLM diagnostics innovation and how it has shaped the future of clinical testing.

loved hand holding a blood vial in front of blurred Chicago skyline. Overlay text says ‘From vial… To Chicago?’ in bold white font on black background.

Each summer, the laboratory diagnostics showcase hosted by the Association for Diagnostics & Laboratory Medicine (ADLM) draws industry leaders to Chicago.

Thumbnail showing a vial of clear contrast agent on the left, with a red dotted arrow pointing to an X-ray image of a skull displayed on a tablet held by a person in a white coat. Overlay text reads “Not approved here?” in bold black and white text.

Nigel and Nick explore how contrast agents in imaging support medical device trials and diagnostics. While bones appear clearly in standard X-rays, soft tissues like those in the nasal cavity often require contrast agents to become visible.