Breath Testing in Medical Devices: From Impairment to Gut Health

MedDevice by Design with Mark Drlik and Ariana Wilson
Resources

Breath Testing in Medical Devices: From Impairment to Gut Health

Sector: Diagnostics
YouTube video thumbnail

In this episode of MedDevice by Design, we explore how breath testing in medical devices is transforming diagnostics. Mark Drlik walks through how this technology supports everything from roadside impairment detection to gastrointestinal analysis. With advances in sensor design and regulatory strategy, breath-based diagnostics are becoming more versatile and reliable.

How Breath Testing Works

Breath testing provides a non-invasive window into the body’s chemistry. While some tests measure ethanol levels for roadside impairment checks, others detect gases from bacterial activity in the digestive tract. These tests typically begin with a fasting period. After collecting a baseline breath sample, the patient ingests a sugar-based substance. Over time, their body’s response is recorded through exhaled gases.

This breath data reveals how the gut processes nutrients and how the microbiome behaves—helping clinicians make accurate diagnoses without invasive procedures.

Key Challenges in Breath-Based Diagnostics

Breath testing in medical devices involves several technical challenges. For instance, moisture in breath can damage internal sensors or promote mold growth. Additionally, when devices are reused, designers must reduce cross-contamination risks between patients and healthcare professionals.

Sensor accuracy also plays a crucial role. The readings must be precise and consistent, especially if breath samples are collected remotely or mailed to labs.

Understanding the Regulatory Landscape

Breath testing devices fall under different regulations based on their use:

  • Roadside devices are governed by the U.S. Department of Transportation.
  • Clinical breath tests used in emergency care are usually classified as Class II medical devices.
  • Lab-based breath diagnostics follow separate FDA and CLIA regulations.

Because each regulatory pathway differs, developers must define the use case early in the design process.

Why Breath Testing Matters

Breath testing in medical devices represents a growing opportunity for non-invasive diagnostics. Not only does it enable quicker results, but it also improves patient comfort and expands the reach of diagnostic tools beyond hospitals and clinics.

Diagram showing medical device at the center connected to clinicians, patients, and regulatory bodies with text 'Who are we designing for?' highlighting stakeholder mapping in MedTech design.

Every phase of a device’s life cycle involves different people with distinct needs—from clinicians and patients to service technicians and regulatory bodies.

A fluorescent protein assay sample glows under UV light as part of medical device cleaning validation testing.

Nick Allan and Nigel Syrotuck explain how a fluorescent protein assay helps engineers measure contamination and cleaning performance in medical devices.

Engineer assembling electronic components during medical device design transfer process.

Your team is ready for design validation. The prototype performs well, test plans are in motion, and everything points to a smooth handoff to manufacturing. Then your partner calls with bad news: they can’t build the device as designed.

Contract Manufacturer Rejection - Engineering team reviews early-stage medical device design and manufacturability during a design transfer meeting at StarFish Medical.

You’ve cleared the toughest engineering hurdles and proven your design works. Then, just as you prepare to scale, your contract manufacturer turns you down.