Jet Injector Drug Delivery: Promise and Pitfalls

Two men, Nick A. (left) and Nigel (right), sit at a white table, engaging in a lively and friendly conversation. Both wear checkered shirts and lavalier microphones, suggesting a filmed discussion or interview. Nick holds tissue samples in one hand and gestures animatedly, while Nigel smiles in response. Each has a white mug labeled with their name and a purple star logo. The background is a bright white, creating a clean and professional studio setting.
Resources

Jet Injector Drug Delivery: Promise and Pitfalls

Topic: Bio Break
YouTube video thumbnail

In this episode of Bio Break, Nick and Nigel dive into the world of jet injector drug delivery. This needle-free method, made popular in science fiction and real-world vaccines, is still used today. But while the idea of a high-pressure, pain-free injection sounds ideal, the conversation uncovers key limitations.

What Is a Jet Injector?

Jet injectors deliver drugs by forcing liquid medication through the skin using high pressure, eliminating the need for a needle. That pressure forms a thin stream that penetrates the skin, ideally resulting in less pain than traditional injections. The technology has been around since the 1960s and remains popular in certain applications.

Less Pain, More Problems?

While jet injector drug delivery may reduce pain, Nigel highlights concerns. The high pressure can cause side spray, potentially wasting expensive medications. There’s also the risk of cross-contamination, especially when parts of the injector are reused. Additionally, some advanced drugs—like those using lipid nanoparticles for mRNA vaccines—may be incompatible due to shear forces that can damage sensitive payloads.

Why Jet Injectors Are Still Around

Despite the challenges, jet injectors offer clear benefits in usability. They provide a quick, needle-free option that appeals to patients and practitioners alike. However, understanding their limitations is key to deciding when they’re the right tool for the job.

Magnified view of printed circuit board inspection during PCBA bring-up for medical device prototype development.

Bringing up a new printed circuit board assembly (PCBA) for a medical device is both exciting and high-stakes.

Engineer testing circuit board for portable medical device design using oscilloscope and microscope in electronics lab.

Several design considerations come into play when designing portable medical electronic devices, from performance, to usability, manufacturability and reliability.

Engineer testing power stability and voltage regulation on medical device PCB using lab instruments and probes.

For many medical devices, power stability isn’t just a nice-to-have, it’s mission-critical.

Thumbnail showing a medical sampling pipette with a red arrow pointing to a microscope under the text “Repurposed for Research?” illustrating medical device adaptation in scientific studies.

Nick Allan and Nigel Syrotuck discuss device repurposing in research, sharing a story that blends microbiology, animal science, and engineering ingenuity.