Bio Break: Real-Time Imaging for Targeted Drug Delivery

Resources

Bio Break: Real-Time Imaging for Targeted Drug Delivery

In this episode of Bio Break, Nick and Joris discuss the fascinating world of real-time imaging for targeted drug delivery. When delivering drugs to precise locations in the body, how do we ensure they reach the right spot? The answer lies in medical imaging technologies such as MRI, CT, and ultrasound, which play a crucial role in guiding complex drug delivery devices.

Nick starts by asking how imaging technologies help visualize drug targeting during delivery. Joris explains that MRI (Magnetic Resonance Imaging), CT (Computed Tomography), and ultrasound are the three most commonly used imaging techniques. Each has its advantages and limitations depending on the application.

  • MRI offers exceptional resolution and is ideal for deep-tissue targeting, such as brain delivery for conditions like Parkinson’s disease. However, intraoperative MRI machines are less accessible in hospitals, making their real-time use challenging.
  • CT scanning is more widely available and excellent for bone-related targeting, such as spinal drug delivery. While it has slightly lower resolution than MRI, it is a practical and widely adopted solution in medical settings.
  • Ultrasound is the most real-time imaging method and is commonly used for nerve blocks and pain management. However, it has depth limitations and is ineffective for regions behind bone, such as the brain.

Nick and Joris also discuss the future of medical imaging in drug delivery. With advancements in 3D imaging and computational modeling, physicians will soon have better spatial awareness of the drug delivery process, improving precision and patient outcomes.

As medical imaging evolves, AI-driven technologies and 3D imaging integration will revolutionize precision drug delivery, making it more efficient and accessible.

Real-Time Imaging for Targeted Drug Delivery

A promotional graphic with bold text reading "Vision Surgery with a Tooth" in purple and black letters. Below the text is a large 3D image of a tooth and a purple plus sign. On the right side, a woman is undergoing an eye exam using a slit lamp microscope.

In this episode of Bio Break, Nick and Joris dive into one of the most astonishing—and real—medical innovations we’ve ever come across: osteo-odonto-keratoprosthesis. Or, as Nick quickly dubs it, “tooth in eye surgery.”

Crushed plastic granules for recycling. Plastic crusher. Recycled plastic with mixed colors. The concept of recycled plastic used

For Earth Day 2025, we asked our employees to share medtech recycling and innovation opportunities and obstacles.  We invite everyone in medical device development and healthcare to unite behind medtech recycling and innovation. 

An individual lies back with eyes open as a drop of eye medication falls from a dropper, highlighting the process of vision care.

The human eye is an extremely delicate organ, often prone to irritation, dryness and various diseases, such as glaucoma, cataracts, keratoconus, age-related macular degeneration, and many others. These ocular clinical conditions also affect patients’ quality of life.

A Caucasian girl in her 20s or 30s undergoes transcranial magnetic stimulation therapy at a psychiatric facility to treat depression or anxiety.

Exploration of drug-device combination therapies that are transforming the treatment of Parkinson’s, epilepsy, depression, and brain cancer.