
Bio Break: Real-Time Imaging for Targeted Drug Delivery
In this episode of Bio Break, Nick and Joris discuss the fascinating world of real-time imaging for targeted drug delivery. When delivering drugs to precise locations in the body, how do we ensure they reach the right spot? The answer lies in medical imaging technologies such as MRI, CT, and ultrasound, which play a crucial role in guiding complex drug delivery devices.
Nick starts by asking how imaging technologies help visualize drug targeting during delivery. Joris explains that MRI (Magnetic Resonance Imaging), CT (Computed Tomography), and ultrasound are the three most commonly used imaging techniques. Each has its advantages and limitations depending on the application.
- MRI offers exceptional resolution and is ideal for deep-tissue targeting, such as brain delivery for conditions like Parkinson’s disease. However, intraoperative MRI machines are less accessible in hospitals, making their real-time use challenging.
- CT scanning is more widely available and excellent for bone-related targeting, such as spinal drug delivery. While it has slightly lower resolution than MRI, it is a practical and widely adopted solution in medical settings.
- Ultrasound is the most real-time imaging method and is commonly used for nerve blocks and pain management. However, it has depth limitations and is ineffective for regions behind bone, such as the brain.
Nick and Joris also discuss the future of medical imaging in drug delivery. With advancements in 3D imaging and computational modeling, physicians will soon have better spatial awareness of the drug delivery process, improving precision and patient outcomes.
As medical imaging evolves, AI-driven technologies and 3D imaging integration will revolutionize precision drug delivery, making it more efficient and accessible.
Real-Time Imaging for Targeted Drug Delivery
Related Resources


We explore the world of brain-computer interfaces (BCIs) and the challenges of capturing thought into action. Mark Drlik and Ariana Wilson walk through how these systems translate brain activity into control signals for devices—without needing surgical implants.

Nigel and Nick explore microneedle drug delivery—a growing field in medtech that aims to improve patient comfort and treatment compliance. While the term “microneedles” may sound futuristic, this technology has been around for years.

The impact of shear stress is critical to effectively design medical devices that handle biological fluids such as proteins or cell culture media. For example, non-physiological shear stress (NPSS) on blood is a key factor because hemolysis (cell rupture) could occur due to accumulated stress.