Breath Testing in Medical Devices: From Impairment to Gut Health

Ariana Wilson and Mark Drlik seated against a white background, wearing lavalier microphones. The woman on the left has long brown curly hair and is wearing a beige cardigan over a taupe top. The man on the right is wearing glasses and a blue button-up shirt. They appear to be engaged in conversation or a video interview.
Resources

Breath Testing in Medical Devices: From Impairment to Gut Health

Sector: Diagnostics

In this episode of MedDevice by Design, we explore how breath testing in medical devices is transforming diagnostics. Mark Drlik walks through how this technology supports everything from roadside impairment detection to gastrointestinal analysis. With advances in sensor design and regulatory strategy, breath-based diagnostics are becoming more versatile and reliable.

How Breath Testing Works

Breath testing provides a non-invasive window into the body’s chemistry. While some tests measure ethanol levels for roadside impairment checks, others detect gases from bacterial activity in the digestive tract. These tests typically begin with a fasting period. After collecting a baseline breath sample, the patient ingests a sugar-based substance. Over time, their body’s response is recorded through exhaled gases.

This breath data reveals how the gut processes nutrients and how the microbiome behaves—helping clinicians make accurate diagnoses without invasive procedures.

Key Challenges in Breath-Based Diagnostics

Breath testing in medical devices involves several technical challenges. For instance, moisture in breath can damage internal sensors or promote mold growth. Additionally, when devices are reused, designers must reduce cross-contamination risks between patients and healthcare professionals.

Sensor accuracy also plays a crucial role. The readings must be precise and consistent, especially if breath samples are collected remotely or mailed to labs.

Understanding the Regulatory Landscape

Breath testing devices fall under different regulations based on their use:

  • Roadside devices are governed by the U.S. Department of Transportation.
  • Clinical breath tests used in emergency care are usually classified as Class II medical devices.
  • Lab-based breath diagnostics follow separate FDA and CLIA regulations.

Because each regulatory pathway differs, developers must define the use case early in the design process.

Why Breath Testing Matters

Breath testing in medical devices represents a growing opportunity for non-invasive diagnostics. Not only does it enable quicker results, but it also improves patient comfort and expands the reach of diagnostic tools beyond hospitals and clinics.

X-ray image of a human chest showing bones in high contrast. A visible electronic device, likely a pacemaker or implant, is located in the upper left chest area. A bold red arrow points to the device with a label in black and white text reading “definitely not bone.”

Mark and Ariana explore the surprising versatility of barium sulfate—a material used widely in both diagnostic procedures and medical device manufacturing. While many recognize it as the contrast agent you drink before an X-ray, it’s also a key additive that enhances plastic components across the healthcare industry.

Gloved hand holding a test tube filled with red liquid, with a large red arrow pointing at the tube on a blue gradient background.

We explore a groundbreaking shift in how Alzheimer’s disease may soon be diagnosed. Instead of relying on invasive spinal taps or costly PET scans, researchers have developed a blood test that detects key proteins associated with the disease—offering a more accessible and patient-friendly screening method.

A bearded man in a denim shirt uses a handheld breathalyzer device. To the left, bold text reads: "How Breath Testing REALLY works," with the word "REALLY" emphasized in bright purple.

We explore how breath testing in medical devices is transforming diagnostics. Mark Drlik walks through how this technology supports everything from roadside impairment detection to gastrointestinal analysis.

A transparent capsule-shaped ingestible medical device is shown on the right, revealing internal electronics, circuits, and components. On the left, bold purple text reads “Ingestible Medical Devices” against a clean white background.

Mark Drlik and Ariana Wilson introduce the fascinating world of ingestible capsules—tiny, swallowable medical devices that are revolutionizing gastrointestinal health monitoring and targeted therapy.