Resource Centre

Discover a wealth of knowledge and insights from the experts at StarFish Medical. Our Resource Centre offers product development tips, reviews of new and cutting-edge technologies, and in-depth articles on regulatory updates and compliance in medical device development.

Archive Filters
Actions
  • A composite image showing an eye processed through a sequence of transformations from left to right. The leftmost section displays a relatively clear image of a human eye with natural textures and lashes. Moving right, the image becomes increasingly abstract and pixelated through various digital processing techniques, including edge detection, binarization, contrast enhancement, and pixel block reduction. Each vertical segment represents a different stage or algorithm in the image processing pipeline, transitioning from high-resolution realism to low-resolution abstraction.

    Computer Vision for Medical Devices is constantly evolving and incorporating new techniques and technologies as they emerge.

  • A close-up of a person's skin with a smart bandage applied. The bandage contains an embedded green-glowing electronic circuit, resembling a microchip, suggesting advanced medical monitoring or theranostic technology.

    With the recent developments and seemingly ubiquitous nature of real time glucose monitoring and availability of smart wearable tech, the development of a theranostic band-aid seems inevitable. But how practical would this be? Is there a Theranostic wound dressings market?

  • Purple text reads 'FDA rejects Lab Results?' next to a rubber stamp marked 'REJECTED' resting on a document.

    In this episode of MedDevice by Design, Ariana Wilson and Mark Drlik examine what happened, what it means for medical device innovators, and how the FDA’s ASCA (Accreditation Scheme for Conformity Assessment) program helps reduce regulatory risk.

  • Illustration of a house with a green checkmark beside a hospital with a red X. Text above reads "Prevent the Hospital?" in bold black and purple lettering, highlighting the concept of avoiding hospitalization through preventative healthcare.

    In this episode of Bio Break, Nick Allan and Joris van der Heijden explore a critical but often overlooked topic in healthcare innovation: prevention. While most conversations about medical devices revolve around treatment, the duo shifts the focus to technologies that help people avoid hospitalization altogether. Preventive medical devices and diagnostic tools are quietly transforming healthcare by catching diseases earlier and reducing the need for invasive procedures.

  • Thumbnail with the text 'Will your MedTech Product succeed?' in bold black and purple font. On the right, Mark Drlik wearing glasses gestures toward a whiteboard with triple Venn diagrams labeled with terms like 'Desirability,' 'Feasibility,' 'Viability,' and 'Regulatory.'

    Ariana Wilson and Mark Drlik break down a powerful visual framework for understanding what makes a medtech product, and the company behind it, truly successful. Using a triple Venn diagram, Mark explains how strategic alignment across feasibility, viability, and desirability can drive better product outcomes and business success in the medical device industry.

  • A laboratory scene featuring a glass Erlenmeyer flask filled with bright green liquid placed on a table against a dark background. Bold text on the left reads, “He drank Bacteria!?” in large gray and purple letters, adding a sense of curiosity and intrigue.

    In this episode of Bio Break, Nick shares one of his favorite discoveries in the world of infectious disease research — the groundbreaking discovery of Helicobacter pylori and its role in causing peptic ulcers. This fascinating story showcases how persistence, scientific curiosity, and innovative thinking can lead to discoveries that reshape medical science.

  • A close-up image of a hand drawing on a whiteboard with a marker, illustrating a brainstorming or planning session. Bold text on the left reads 'Cost to develop Medical Device' with the word 'develop' highlighted in purple. The image conveys the concept of medical device development costs and design planning.

    What are the real costs of developing a medical device? In this episode of Bio Break, Nick and Joris dive into one of the most frequently asked questions they hear from clients: How much does it cost to develop a medical device?

  • White and colored label rolls isolated on white background with shadow reflection. Color reels of labels for printers. Labels for direct thermal or thermal transfer printing. Abstract background.

    We all know medical devices have labels, but how often do we consider their purpose and the effort required to ensure they provide the right information? Device labelling serves as the interface between the manufacturer, the user, and regulatory bodies. (Note that being from Canada, we spell labelling with two Ls.)

  • Room for sterilization of medical instruments in a modern outpatient clinic

    Sterilization is a critical process in the medical device industry as it provides a reliable way to ensure that devices are free from harmful microorganisms when they are used on patients. This blog talks about the categories of sterilization currently used on medical devices in manufacturing settings. It also addresses concerns surrounding the use of ethylene oxide (EtO), an indispensable method for sterilizing heat and moisture sensitive devices.