Bio Break: How Nature-Inspired Biosensors Are Revolutionizing Medical Devices

Resources

Bio Break: How Nature-Inspired Biosensors Are Revolutionizing Medical Devices

Sector: Diagnostics
Topic: Bio Break

In this episode of Bio Break, Nick and Joris dive into the fascinating realm of biosensors, showcasing how nature’s biological processes inspire groundbreaking innovations in medical device technology. From jellyfish to fireflies, the natural world has provided invaluable tools that are transforming diagnostics and research.

The discussion kicks off with green fluorescent protein (GFP), a revolutionary biosensor derived from jellyfish. Discovered in the 1960s and popularized in the 1990s, GFP earned its place in history with a Nobel Prize. This remarkable protein fluoresces when exposed to specific wavelengths of light, enabling scientists to monitor cellular activities. GFP has become an indispensable tool for tracking cellular processes, from observing metabolic activities to measuring changes in pH levels. Joris shares an example from his PhD research, where he utilized a modified GFP to measure the redox state of cells, highlighting the protein’s adaptability and utility.

The conversation shifts to luminescence, drawing inspiration from fireflies and their ability to emit light through biochemical reactions. This phenomenon, known as bioluminescence, has been harnessed in medical research to create biosensors that can emit light when specific chemical reactions occur. Joris discusses how luminescent molecules, such as luciferase, have played pivotal roles in cancer research and diagnostics. A newer innovation, NanoLuc, inspired by deep-sea shrimp, has taken luminescence to the next level with its smaller, brighter design, enabling more efficient and precise applications.

This episode highlights how the interplay of biology and engineering continues to unlock new possibilities in diagnostics and medical devices. By mimicking nature’s ingenuity, biosensors are paving the way for non-invasive, accurate, and efficient tools for understanding and monitoring health.

How Nature-Inspired Biosensors Are Revolutionizing Medical Devices

Person applying a white microneedle patch to their upper arm, with a red arrow pointing to the patch and a close-up of the microneedles on the right. Text reads “Painless!” to highlight the pain-free nature of the patch.

Nigel and Nick explore microneedle drug delivery—a growing field in medtech that aims to improve patient comfort and treatment compliance. While the term “microneedles” may sound futuristic, this technology has been around for years.

Illustration of suppository drug delivery method. Rectangular blister pack of suppositories, which are making a comeback in drug delivery, on a blue background with one suppository placed outside the packaging. Large bold text reads 'What a comeback!' with a red arrow pointing toward the suppositories, suggesting renewed interest or relevance.

Nick and Nigel discuss an often-overlooked but increasingly relevant form of drug delivery: suppositories. While typically considered old-fashioned, suppositories are experiencing a resurgence in modern MedTech thanks to their versatility, systemic absorption benefits, and emerging formulation technologies.

A gloved hand holds a syringe near the palm of another hand, which has a white grid drawn on it. The needle is poised to inject at the intersection of the lines. The background is plain white, drawing focus to the skin and procedural markings.

While most people think of Botox as a simple beauty treatment, there’s a surprising amount of engineering, anatomy, and precision behind the process.

A close-up view of a transparent smart bandage with an embedded microchip adhered to human skin. The circuit lines are visible on the bandage surface. Overlay text reads “Theranostic? Smart Bandages” with “Theranostic?” in bold purple and “Smart Bandages” in bold black, set against a soft blue and skin-toned background.

A theranostic wound dressing does more than cover a cut—it actively detects infection and delivers targeted treatment.