
Bio Break: The Power of Continuous Analyte Monitoring
In this episode of Bio Break, StarFish Medical experts Joris and Nick dive into the transformative concept of Continuous Analyte Monitoring (CxM) and its growing role in wearable medical devices. They discuss the value of tracking metabolic markers over time, as opposed to relying on static time-point measurements, and how this approach enhances precision in both diagnostics and treatment.
The discussion highlights the evolution of continuous monitoring, starting with the gold standard of blood testing. While blood samples provide accurate results, their invasive nature and impracticality for frequent testing have driven innovation in non-invasive or minimally invasive techniques. For instance, wearable devices now use sensors with flexible needles or interstitial fluid measurements to monitor markers like glucose continuously.
Nick shares fascinating insights from his past work monitoring stress responses in animals, where cortisol levels were measured using both blood samples and innovative hair analysis techniques. He emphasizes the importance of timing in traditional testing, as data can fluctuate significantly depending on the time of day or external stressors. This variability underlines the immense value of continuous monitoring, which provides consistent, real-time data and eliminates the need for rigid sampling schedules.
Key takeaways from the episode include:
- Continuous Monitoring Advantages: The ability to track trends and patterns over time, offering deeper insights into a patient’s health.
- Wearable Innovations: How cutting-edge devices measure biomarkers like glucose or cortisol through interstitial fluid, enhancing patient convenience and compliance.
- Precision in Data: Continuous tracking minimizes variability caused by time-of-day effects or environmental stressors, improving diagnostic and therapeutic accuracy.
This episode highlights how CxM technology is shaping the future of personalized healthcare by offering real-time, actionable insights. Whether you’re a developer, healthcare professional, or simply curious about wearable medical devices, this episode provides valuable knowledge about the impact of continuous monitoring on patient outcomes.
The Power of Continuous Analyte Monitoring
Related Resources

StarFish Medical, Canada’s largest medical device design company, is excited to announce our participation at The MedTech Conference 2025 in San Diego, CA. We will be exhibiting in booth 1103 from October 5-8, 2025 at the San Diego Convention Centre.

Nick Allan and Nigel Syrotuck share their end-of-summer reading list, featuring FDA regulatory books and PCR memoirs. From navigating regulatory hurdles to celebrating groundbreaking discoveries, their choices show how science reading can be both educational and entertaining.

Project managers are on the front lines of rising complexity in medical device development. They sit at the intersection of vendor timelines, regulatory constraints, and engineering realities.

While medical devices often dominate development conversations, the way drugs are delivered across regions can dramatically change how treatments succeed — or fail.
Learn the Basics of Wearable Medical Device Adhesives including DO’s and Don’ts in our comprehensive overview.
Related Resources

Nick Allan and Nigel Syrotuck share their end-of-summer reading list, featuring FDA regulatory books and PCR memoirs. From navigating regulatory hurdles to celebrating groundbreaking discoveries, their choices show how science reading can be both educational and entertaining.

Project managers are on the front lines of rising complexity in medical device development. They sit at the intersection of vendor timelines, regulatory constraints, and engineering realities.

While medical devices often dominate development conversations, the way drugs are delivered across regions can dramatically change how treatments succeed — or fail.

As a software engineer with experience in both web development and medical system software engineering, I’ve worked on projects ranging from consumer-facing web applications to medical device graphical user interfaces (GUIs).