Bio Break: The Role of Pipettes in Lab Workflows

Resources

Bio Break: The Role of Pipettes in Lab Workflows

In this episode of Bio Break, Nick and Joris dive into a common challenge faced by researchers and product developers: the use of pipettes in laboratory workflows and the need for alternatives in non-laboratory environments. From the precision of the trusty P200 pipette to innovative solutions like microfluidics, this discussion highlights the strengths and limitations of fluid handling tools in research and beyond.

Nick kicks things off by showcasing his favorite instrument, the P200 pipette. Renowned for its precision and ease of use, the pipette is a cornerstone in basic research, capable of transferring fluids in the range of 1–200 microliters. With its ergonomic design and disposable tips, it ensures accuracy and contamination-free sample handling, making it indispensable for laboratory scientists. However, as Joris points out, transitioning workflows out of the lab introduces unique challenges.

The conversation shifts to why developers and clients often seek alternatives to pipettes. For instance, in clinical or point-of-care settings, pipettes may not be practical due to operator inexperience or the need to handle viscous solutions like honey or biological samples. Nick illustrates this challenge with a viscosity comparison, explaining how materials like honey, with viscosity 1,000 times that of water, are difficult to handle using traditional pipettes.

Joris introduces innovative alternatives like microfluidics, a precise and controlled method for transporting small liquid volumes, and off-the-shelf transfer pipettes, which can be cost-effective but may lack the precision required for critical applications. These solutions showcase the importance of adapting workflows to specific needs, whether it’s improving accuracy, handling viscous fluids, or operating in non-lab environments.

Whether you’re a researcher, engineer, or product developer, this episode provides valuable insights into optimizing fluid handling for various scenarios. Learn about the trade-offs of replacing pipettes and how cutting-edge tools can transform workflows.

The Role of Pipettes in Lab Workflows

A close-up of a lateral flow test with a dropper releasing a liquid sample into the test well. The background features a blurred whiteboard with scientific diagrams. Bold text on the image reads "Big Pivot: From LDT to Lateral Flow," emphasizing the transition from lab-developed tests (LDT) to rapid lateral flow diagnostics.

In the world of medical device development, unexpected challenges often lead to critical product pivots. In this episode of Bio Break, Nick and Joris discuss one of the most dramatic pivots they’ve encountered—transforming a lab-developed test (LDT) into a lateral flow assay to expand its market reach.

Two men sit at a table in a discussion, with one holding a frozen soda can. The background features a whiteboard with faint writing, and snowflake graphics are scattered around the image. The text overlay reads, "The Science of Freezing Cells" in bold black and purple letters.

Cryopreservation is essential in biological research, regenerative medicine, and stem cell therapies. But freezing biological materials isn’t as simple as placing them in a freezer. Nick and Joris dive into this fascinating process in this episode of Bio Break, using a real-world example—Nick’s frozen beverage can, which burst due to water expansion.

Two men sit at a table discussing glucose monitors, with the text "How Glucose Monitors Really Work" overlaid on the image. One man gestures while speaking, and both have coffee mugs labeled with their names. The background features a whiteboard with blurred writing.

Continuous glucose monitors (CGMs) are revolutionizing how people track blood sugar levels in real time. But how do they work, and where exactly do they measure glucose? Nick and Joris explore the science behind CGMs, explaining the difference between blood glucose monitoring and interstitial fluid measurement.

Two men sit at a table discussing the science behind freeze-drying. One of them holds a jar of freeze-dried coffee, illustrating the topic. The text overlay reads "The Science Behind Freeze Drying" in bold letters. A whiteboard with diagrams is visible in the background, reinforcing the technical discussion.

Nick and Joris dive into the fascinating world of freeze-drying, exploring how this process extends shelf life and maintains the integrity of various products—including reagents used in in vitro diagnostics and even instant coffee!