Bio Break: The Science of Cryopreservation

Resources

Bio Break: The Science of Cryopreservation

Topic: Bio Break

Cryopreservation is essential in biological research, regenerative medicine, and stem cell therapies. But freezing biological materials isn’t as simple as placing them in a freezer. Nick and Joris dive into this fascinating process in this episode of Bio Break, using a real-world example—Nick’s frozen beverage can, which burst due to water expansion. Similarly, freezing water inside cells can cause severe damage as ice crystals form and rupture delicate membranes, rendering biological samples unusable. Scientists have developed two primary methods to counteract this issue: slow freezing and vitrification (fast freezing).

Slow freezing relies on cryoprotectant agents (CPAs), such as sugars like trehalose, which help remove water from cells through an osmotic shift. These sugars stabilize lipid membranes and prevent excessive damage during freezing. The sample is then cooled gradually in a controlled freezing system, which allows water to be extracted slowly while minimizing structural harm. This method is widely used in stem cell preservation and biobanking due to its reliability.

On the other hand, vitrification is a much faster process. Instead of sugars, scientists use stronger cryoprotective agents like glycerol, propylene glycol, or DMSO. These agents are introduced through a titration process, replacing water while preventing toxicity. The sample is then rapidly plunged into liquid nitrogen at -196°C (77K), instantly freezing it into a glass-like solid state. This ultra-fast approach prevents ice crystal formation and is commonly used in stem cell therapy and organ preservation.

One of the biggest challenges in medical applications is removing toxic cryoprotectants before administering cells to patients. In stem cell therapies, careful thawing and dilution of CPAs ensure that viable, undamaged cells are ready for transplantation. Scientists are continuously working on improving cryopreservation methods to make them safer and more effective for clinical applications.

Cryopreservation is critical for the long-term storage of biological materials, but improper freezing can be disastrous. By choosing the right technique—whether slow freezing or vitrification—scientists can ensure that cells and tissues remain viable for future use. Want to learn more about protecting delicate biological samples from freezing damage? Watch the full episode of Bio Break!

The Science of Cryopreservation

Person applying a white microneedle patch to their upper arm, with a red arrow pointing to the patch and a close-up of the microneedles on the right. Text reads “Painless!” to highlight the pain-free nature of the patch.

Nigel and Nick explore microneedle drug delivery—a growing field in medtech that aims to improve patient comfort and treatment compliance. While the term “microneedles” may sound futuristic, this technology has been around for years.

Illustration of suppository drug delivery method. Rectangular blister pack of suppositories, which are making a comeback in drug delivery, on a blue background with one suppository placed outside the packaging. Large bold text reads 'What a comeback!' with a red arrow pointing toward the suppositories, suggesting renewed interest or relevance.

Nick and Nigel discuss an often-overlooked but increasingly relevant form of drug delivery: suppositories. While typically considered old-fashioned, suppositories are experiencing a resurgence in modern MedTech thanks to their versatility, systemic absorption benefits, and emerging formulation technologies.

A gloved hand holds a syringe near the palm of another hand, which has a white grid drawn on it. The needle is poised to inject at the intersection of the lines. The background is plain white, drawing focus to the skin and procedural markings.

While most people think of Botox as a simple beauty treatment, there’s a surprising amount of engineering, anatomy, and precision behind the process.

A close-up view of a transparent smart bandage with an embedded microchip adhered to human skin. The circuit lines are visible on the bandage surface. Overlay text reads “Theranostic? Smart Bandages” with “Theranostic?” in bold purple and “Smart Bandages” in bold black, set against a soft blue and skin-toned background.

A theranostic wound dressing does more than cover a cut—it actively detects infection and delivers targeted treatment.