Bio Break: Understanding Limit of Detection and Limit of Quantification in Assay Development

Resources

Bio Break: Understanding Limit of Detection and Limit of Quantification in Assay Development

Sector: Diagnostics
Topic: Bio Break

Dive into the world of assay development with this informative episode of Bio Break, where Nick and Joris explore two critical concepts: Limit of Detection (LOD) and Limit of Quantification (LOQ). These terms might sound similar, but their implications for clinical diagnostics and medical devices are vastly different. Whether you’re an engineer, researcher, or product developer, this video sheds light on why both LOD and LOQ are vital in ensuring the precision and reliability of diagnostic tests.

Nick breaks down these acronyms, explaining how LOD refers to analytical sensitivity — essentially, how low your system can detect an analyte. Meanwhile, LOQ focuses on functional sensitivity, or how well the assay performs in real-world applications, considering variables like user handling, reagents, and diverse physiological conditions. With real-world examples, this discussion highlights the importance of understanding these thresholds to create accurate and effective diagnostic tools.

In this episode, learn about the rule of thumb engineers use to determine these limits: aiming for three standard deviations above the detection limit for LOD and a robust ten standard deviations for LOQ to ensure consistent results in practical settings. From engineering perspectives to real-world applications, Nick and Joris share insights that bridge the gap between theory and practice in assay development.

If you’re navigating the complexities of medical device or diagnostic development, this episode is a must-watch! With a focus on how engineering and functionality intersect in LOD and LOQ testing, you’ll gain actionable insights for your projects.

Key topics covered:

  • What LOD and LOQ mean for assay development.
  • Differences between analytical and functional sensitivity.
  • The importance of statistical thresholds in diagnostic reliability.

Don’t miss out—watch now to elevate your understanding of assay performance metrics!

Understanding LOD and LOQ in Assay Development

YouTube video thumbnail
“Hands holding books under the text ‘End-of-Summer Reads,’ highlighting FDA regulatory books and PCR memoirs.

Nick Allan and Nigel Syrotuck share their end-of-summer reading list, featuring FDA regulatory books and PCR memoirs. From navigating regulatory hurdles to celebrating groundbreaking discoveries, their choices show how science reading can be both educational and entertaining.

Pill and vial with arrows over world map. Overlay text reads: ‘Depends where’.

While medical devices often dominate development conversations, the way drugs are delivered across regions can dramatically change how treatments succeed — or fail.

A hand holds a blue asthma inhaler against a light blue background. A red arrow points to the inhaler. Overlay text reads: ‘Used Wrong?’ in bold black letters on a white highlight.

Nigel Syrotuck and Nick Allan explore the surprising reality of inhaler spacer use. While these devices are often thought of as tools for children with asthma, research shows that adults struggle with them too.

A vial of orange liquid with a radiation symbol and a syringe sit on a reflective metal surface in front of a large medical imaging machine. The overlay text reads: "Radioactive. On Purpose?" in bold black font on a white rounded background.

Radiopharmaceutical device development is gaining momentum as medical teams explore new frontiers in diagnostic imaging and cancer treatment.