Bio Break: Why Don’t We Have a Cortisol-Sensing Wearable Yet?

Resources

Bio Break: Why Don’t We Have a Cortisol-Sensing Wearable Yet?

Sector: Wearables
Topic: Bio Break

In this Bio Break episode, Nick Allan and Joris van der Heijden tackle a question many tech and health enthusiasts have wondered for years: Where is my cortisol-sensing wearable? Nick shares a nostalgic story of reading about futuristic wearable technology in Popular Mechanics as a child — devices that would one day monitor biomarkers like cortisol to track stress and overall health. Now, decades later, he and Joris break down why such a wearable device still hasn’t become a reality.

Joris explains that although cortisol biosensors and other advanced wearable diagnostics often show up in academic research, turning those scientific breakthroughs into viable consumer products is a much bigger challenge. First, there’s the technical difficulty of converting a sensitive laboratory assay for cortisol into a fully automated, real-time wearable device that could be used reliably outside of controlled lab settings. Measuring something like cortisol, potentially via interstitial fluid or sweat, involves complex fluidic and sensing systems that must function accurately and consistently on a wearable platform.

Second — and often the biggest hurdle — is scaling up manufacturing. Developing a biosensor consumable that can be produced in the millions, perform reliably for every user, and endure various shipping and environmental conditions is an enormous undertaking. Joris points out that ensuring batch-to-batch consistency for sensitive biological components is one of the toughest parts of commercializing wearable biosensor technology. Add to that the need to meet stringent regulatory standards for medical wearables, and it’s easy to see why many promising lab innovations never make it to market.

In short, the journey from a cortisol-sensing concept to a commercial wearable health device requires not only cutting-edge science but also significant investment, manufacturing expertise, and regulatory strategy.

Why Don’t We Have a Cortisol-Sensing Wearable Yet?

YouTube video thumbnail
Magnified view of printed circuit board inspection during PCBA bring-up for medical device prototype development.

Bringing up a new printed circuit board assembly (PCBA) for a medical device is both exciting and high-stakes.

Engineer testing circuit board for portable medical device design using oscilloscope and microscope in electronics lab.

Several design considerations come into play when designing portable medical electronic devices, from performance, to usability, manufacturability and reliability.

Engineer testing power stability and voltage regulation on medical device PCB using lab instruments and probes.

For many medical devices, power stability isn’t just a nice-to-have, it’s mission-critical.

Thumbnail showing a medical sampling pipette with a red arrow pointing to a microscope under the text “Repurposed for Research?” illustrating medical device adaptation in scientific studies.

Nick Allan and Nigel Syrotuck discuss device repurposing in research, sharing a story that blends microbiology, animal science, and engineering ingenuity.