Bio Break: Why Don’t We Have a Cortisol-Sensing Wearable Yet?

Resources

Bio Break: Why Don’t We Have a Cortisol-Sensing Wearable Yet?

Sector: Wearables
Topic: Bio Break

In this Bio Break episode, Nick Allan and Joris van der Heijden tackle a question many tech and health enthusiasts have wondered for years: Where is my cortisol-sensing wearable? Nick shares a nostalgic story of reading about futuristic wearable technology in Popular Mechanics as a child — devices that would one day monitor biomarkers like cortisol to track stress and overall health. Now, decades later, he and Joris break down why such a wearable device still hasn’t become a reality.

Joris explains that although cortisol biosensors and other advanced wearable diagnostics often show up in academic research, turning those scientific breakthroughs into viable consumer products is a much bigger challenge. First, there’s the technical difficulty of converting a sensitive laboratory assay for cortisol into a fully automated, real-time wearable device that could be used reliably outside of controlled lab settings. Measuring something like cortisol, potentially via interstitial fluid or sweat, involves complex fluidic and sensing systems that must function accurately and consistently on a wearable platform.

Second — and often the biggest hurdle — is scaling up manufacturing. Developing a biosensor consumable that can be produced in the millions, perform reliably for every user, and endure various shipping and environmental conditions is an enormous undertaking. Joris points out that ensuring batch-to-batch consistency for sensitive biological components is one of the toughest parts of commercializing wearable biosensor technology. Add to that the need to meet stringent regulatory standards for medical wearables, and it’s easy to see why many promising lab innovations never make it to market.

In short, the journey from a cortisol-sensing concept to a commercial wearable health device requires not only cutting-edge science but also significant investment, manufacturing expertise, and regulatory strategy.

Why Don’t We Have a Cortisol-Sensing Wearable Yet?

YouTube video thumbnail
A patient lies with eyes closed while a clinician marks dotted surgical lines on her face with a skin marker. The patient wears a surgical cap. Overlay text reads: ‘More than a procedure?’ in bold font on a white highlight box.

In this Before the Build episode, Eric Olson and Paul Charlebois reflect on the value of patient-centered field research—and how firsthand observation can reframe design priorities and impact outcomes in profound ways.

loved hand holding a blood vial in front of blurred Chicago skyline. Overlay text says ‘From vial… To Chicago?’ in bold white font on black background.

Each summer, the laboratory diagnostics showcase hosted by the Association for Diagnostics & Laboratory Medicine (ADLM) draws industry leaders to Chicago.

Thumbnail showing a vial of clear contrast agent on the left, with a red dotted arrow pointing to an X-ray image of a skull displayed on a tablet held by a person in a white coat. Overlay text reads “Not approved here?” in bold black and white text.

Nigel and Nick explore how contrast agents in imaging support medical device trials and diagnostics. While bones appear clearly in standard X-rays, soft tissues like those in the nasal cavity often require contrast agents to become visible.

A hospital patient lies in bed with a blurred background of medical equipment; bold text reads “Empathy in Design” across the top.

What does empathetic medical design really look like in practice? Eric and Paul discuss how emotional insight from field research can profoundly impact the design of medical devices