How Anodized Titanium Enhances Medical Devices with Structural Color

Ariana Wilson and Mark Drlik seated against a white background, wearing lavalier microphones. The woman on the left has long brown curly hair and is wearing a beige cardigan over a taupe top. The man on the right is wearing glasses and a blue button-up shirt. They appear to be engaged in conversation or a video interview.
Resources

How Anodized Titanium Enhances Medical Devices with Structural Color

In this episode of MedDevice by Design, we explore the fascinating intersection of materials science and usability in medical device development. Mark Drlik and Ariana Wilson discuss how anodized titanium produces vibrant color without dyes, and how this visual property supports surgical safety, device differentiation, and biocompatibility.

Why Titanium Isn’t Really That Color

Anodized titanium appears colorful, but the hue is an optical illusion created by a thin oxide layer on the surface. As light reflects off both the titanium and its oxide coating, wavelengths interfere with each other to generate specific colors. The exact shade depends on the thickness of this layer, typically ranging from 30 to 55 nanometers. That’s about the size of a virus and smaller than a human cell.

Precision-Controlled Color Without Dyes

The anodization process occurs in a salt bath, where voltage is applied to submerge titanium acting as an anode. Oxygen builds up on the surface, thickening the oxide layer and shifting the visible color through the spectrum—from gold to green. However, due to how light interacts with the oxide, some colors like red are not achievable.

Design Advantages in MedTech

In surgical devices such as bone screws and drill plates, color coding improves usability and safety. Anodized titanium allows medical teams to quickly distinguish device sizes, anatomical sides (left vs. right), or instrument categories without relying on dyes. This is especially important in the operating room, where time and precision are critical.

Biocompatibility Benefits

Unlike anodized aluminum, which often requires additional dyes, anodized titanium achieves structural color naturally. This dye-free process enhances biocompatibility, making titanium a safer and more effective choice in many implantable or surgical applications.

A healthcare professional in a sterile gown and gloves holds an endoscope, with a red arrow pointing toward the device. Beside it, a handheld cleaning brush is shown, symbolizing the manual cleaning process. Text overlay reads “Not sterile. Just safe?”

Ariana and Mark examine the complexities of endoscope reprocessing, one of the most difficult tasks in medical device hygiene.

Sterilizing medical devices using various FDA-approved methods - Image showing three medical-related items—a pulse oximeter, surgical scissors, and a catheter with a Luer lock—on a light background. A bold label at the top reads ‘How to sterilize?’ with an arrow pointing to the pulse oximeter, indicating a question about sterilization methods for these devices.

Ariana and Mark walk through FDA-approved options and explain how to select the right one for your product. From metals to plastics and electronics, not all devices can handle the same process.

X-ray image showing two human knees side-by-side. The right knee appears intact with natural bone structure, while the left knee has a visible knee replacement implant, including metallic components. A bold caption in the upper center reads "Bone or not?" and a red curved arrow points from the text to the knee with the implant, emphasizing the contrast between natural bone and artificial joint.

In this episode of MedDevice by Design, Ariana and Mark dive into the biomechanics and materials science behind osseointegration for implants.

Split image showing two close-up views of a human eye. On the left, the eye is seen through thick black-framed glasses, indicating impaired vision. On the right, the same eye is enhanced with a futuristic digital overlay of concentric circles and interface elements, suggesting advanced vision restoration technology. A red curved arrow points from left to right, implying improvement. Bold text at the top reads "Restoring Vision?"

Ariana and Mark explore how accommodative intraocular lens technology may one day restore natural vision for people who require cataract surgery or suffer from presbyopia. As Mark shares, traditional bifocals are not ideal, and new lens solutions may offer better outcomes.