
How Anodized Titanium Enhances Medical Devices with Structural Color
In this episode of MedDevice by Design, we explore the fascinating intersection of materials science and usability in medical device development. Mark Drlik and Ariana Wilson discuss how anodized titanium produces vibrant color without dyes, and how this visual property supports surgical safety, device differentiation, and biocompatibility.
Why Titanium Isn’t Really That Color
Anodized titanium appears colorful, but the hue is an optical illusion created by a thin oxide layer on the surface. As light reflects off both the titanium and its oxide coating, wavelengths interfere with each other to generate specific colors. The exact shade depends on the thickness of this layer, typically ranging from 30 to 55 nanometers. That’s about the size of a virus and smaller than a human cell.
Precision-Controlled Color Without Dyes
The anodization process occurs in a salt bath, where voltage is applied to submerge titanium acting as an anode. Oxygen builds up on the surface, thickening the oxide layer and shifting the visible color through the spectrum—from gold to green. However, due to how light interacts with the oxide, some colors like red are not achievable.
Design Advantages in MedTech
In surgical devices such as bone screws and drill plates, color coding improves usability and safety. Anodized titanium allows medical teams to quickly distinguish device sizes, anatomical sides (left vs. right), or instrument categories without relying on dyes. This is especially important in the operating room, where time and precision are critical.
Biocompatibility Benefits
Unlike anodized aluminum, which often requires additional dyes, anodized titanium achieves structural color naturally. This dye-free process enhances biocompatibility, making titanium a safer and more effective choice in many implantable or surgical applications.
Learn more about StarFish Medical.
Related Resources

Ariana and Mark examine the complexities of endoscope reprocessing, one of the most difficult tasks in medical device hygiene.

Ariana and Mark walk through FDA-approved options and explain how to select the right one for your product. From metals to plastics and electronics, not all devices can handle the same process.

In this episode of MedDevice by Design, Ariana and Mark dive into the biomechanics and materials science behind osseointegration for implants.

Ariana and Mark explore how accommodative intraocular lens technology may one day restore natural vision for people who require cataract surgery or suffer from presbyopia. As Mark shares, traditional bifocals are not ideal, and new lens solutions may offer better outcomes.