How Brain-Computer Interfaces Are Mapping the Future of Neurotechnology

MedDevice by Design with Mark Drlik and Ariana Wilson
Resources

How Brain-Computer Interfaces Are Mapping the Future of Neurotechnology

YouTube video thumbnail

In this episode of MedDevice by Design, we explore the world of brain-computer interfaces (BCIs) and the challenges of capturing thought into action. Mark Drlik and Ariana Wilson walk through how these systems translate brain activity into control signals for devices—without needing surgical implants.

What Is a Brain-Computer Interface?

A brain-computer interface captures electrical signals in the brain and maps them to physical or digital actions. Many BCIs use EEG (electroencephalography) to read brain activity from outside the skull and convert patterns into commands. These signals are then interpreted in real time to drive assistive technologies or interact with digital systems.

Key Technical and Ethical Challenges

One challenge is signal noise—especially for non-invasive EEG systems that must read through the skull. Another is user variability, since everyone’s brain activity is slightly different. Ethical concerns around data privacy are significant, as BCIs collect sensitive neurological data. Processing speed is also an issue: the brain fires up to 100 million action potentials per second, at speeds reaching 120 meters per second.

How BCIs Are Being Used

Current BCI applications include neurorehabilitation for people with paralysis or ALS, and emerging uses in gaming and virtual reality. Companies like Neuralink are exploring implanted interfaces, while open-source projects like OpenBCI and institutions like MIT and Stanford lead the research front.

Engineers conducting pre-clinical testing of a novel medical device in a controlled laboratory environment

For manufacturers of novel devices that can make a significant impact to patient health, the goal of the program is to offer a path to streamlined and potentially faster market entry without sacrificing the rigour around ensuring safety and performance.

Medical device data management displayed on a connected healthcare tablet

When I was starting out in medical devices, the discussion focused on the possibility of an internet of things and the promise of “big data” about everything.

Human factors and operational controls in a medical device cleanroom

With the release of ISO 14644-5:2025, Cleanrooms and associated controlled environments, Part 5: Operations, the standard places increased emphasis on operational discipline, human factors, and contamination control behaviour.

AI-enabled medical device software interface illustrating FDA PCCP guidance for controlled algorithm updates

This article outlines the core elements of the PCCP framework, the types of modifications it applies to, and how the FDA expects manufacturers to use it in practice.