Medical Device Sterilization Methods Explained

Ariana Wilson and Mark Drlik seated against a white background, wearing lavalier microphones. The woman on the left has long brown curly hair and is wearing a beige cardigan over a taupe top. The man on the right is wearing glasses and a blue button-up shirt. They appear to be engaged in conversation or a video interview.
Resources

Medical Device Sterilization Methods Explained

YouTube video thumbnail

How do you choose the right medical device sterilization method? In this episode of MedDevice by Design, Ariana and Mark walk through FDA-approved options and explain how to select the right one for your product. From metals to plastics and electronics, not all devices can handle the same process.

Choosing the Right Method

The most common method is steam sterilization using an autoclave. This works well for metal tools like scalpels and orthopedic instruments. However, high heat can damage plastics, so it’s not always the best option.

For heat-sensitive components, ethylene oxide (ETO) is often used. It works at low temperatures, but requires long turnaround times and has safety concerns due to its carcinogenic nature.

Alternatives to ETO

Because of the risks with ETO, many facilities are moving to vaporized hydrogen peroxide plasma. It’s safer for staff and just as effective for sterilizing low-temperature devices. The FDA is also encouraging this transition.

Radiation is another solution. Gamma and E-beam sterilization are fast and effective, but typically only available at large, centralized facilities due to safety requirements.

What About Electronics?

Electronics present a special challenge. They often can’t handle heat or moisture. Designers must plan ahead, choosing components and layouts that limit the number of parts needing sterilization. Sometimes, only patient-contacting elements are sterilized.

If no standard option works, novel sterilization methods are allowed—but require thorough validation. You must prove the method is both effective and repeatable.

Understanding medical device sterilization helps ensure safety, performance, and compliance. Selecting the right method early can save time and cost in development.

A medical professional wearing a white coat and blue gloves holds a red cooler labeled ‘Organ Transport.’ Overlay text reads: ‘The call came’ in bold black letters on a white highlight.

In this Before the Build episode, Eric Olson and Paul Charlebois dive into the importance of organ transplant logistics when designing effective medical devices.

A vial of orange liquid with a radiation symbol and a syringe sit on a reflective metal surface in front of a large medical imaging machine. The overlay text reads: "Radioactive. On Purpose?" in bold black font on a white rounded background.

Radiopharmaceutical device development is gaining momentum as medical teams explore new frontiers in diagnostic imaging and cancer treatment.

Surgeon practicing on a surgical simulator during a medical training session in a clinical environment

The simplest and least expensive way to train users of medical devices is to ask them study the Instructions for Use (IFU) beforehand.

An iron lung on the left and a modern medical ventilator on the right, shown against a plain white background. A red arrow points from the iron lung to the ventilator. Bold overlay text reads: ‘Then vs. Now’ in white font on a black background.

In this MedDevice by Design episode, Ariana Wilson and Mark Drlik take us back in time to explore iron lung innovation during the polio epidemic of the 1920s.