Medical Device Sterilization Methods Explained

MedDevice by Design with Mark Drlik and Ariana Wilson
Resources

Medical Device Sterilization Methods Explained

YouTube video thumbnail

How do you choose the right medical device sterilization method? In this episode of MedDevice by Design, Ariana and Mark walk through FDA-approved options and explain how to select the right one for your product. From metals to plastics and electronics, not all devices can handle the same process.

Choosing the Right Method

The most common method is steam sterilization using an autoclave. This works well for metal tools like scalpels and orthopedic instruments. However, high heat can damage plastics, so it’s not always the best option.

For heat-sensitive components, ethylene oxide (ETO) is often used. It works at low temperatures, but requires long turnaround times and has safety concerns due to its carcinogenic nature.

Alternatives to ETO

Because of the risks with ETO, many facilities are moving to vaporized hydrogen peroxide plasma. It’s safer for staff and just as effective for sterilizing low-temperature devices. The FDA is also encouraging this transition.

Radiation is another solution. Gamma and E-beam sterilization are fast and effective, but typically only available at large, centralized facilities due to safety requirements.

What About Electronics?

Electronics present a special challenge. They often can’t handle heat or moisture. Designers must plan ahead, choosing components and layouts that limit the number of parts needing sterilization. Sometimes, only patient-contacting elements are sterilized.

If no standard option works, novel sterilization methods are allowed—but require thorough validation. You must prove the method is both effective and repeatable.

Understanding medical device sterilization helps ensure safety, performance, and compliance. Selecting the right method early can save time and cost in development.

Thumbnail showing a cartoon sandwich icon with the text “Sandwich ELISA?” and a red arrow pointing to the sandwich.

The sandwich ELISA assay is one of the most common ELISA formats used in diagnostics. Nick and Nigel walk through the method step by step using simple visuals and plain language.

Engineers conducting pre-clinical testing of a novel medical device in a controlled laboratory environment

For manufacturers of novel devices that can make a significant impact to patient health, the goal of the program is to offer a path to streamlined and potentially faster market entry without sacrificing the rigour around ensuring safety and performance.

Medical device data management displayed on a connected healthcare tablet

When I was starting out in medical devices, the discussion focused on the possibility of an internet of things and the promise of “big data” about everything.

Human factors and operational controls in a medical device cleanroom

With the release of ISO 14644-5:2025, Cleanrooms and associated controlled environments, Part 5: Operations, the standard places increased emphasis on operational discipline, human factors, and contamination control behaviour.