Medical Device Sterilization Methods Explained

MedDevice by Design with Mark Drlik and Ariana Wilson
Resources

Medical Device Sterilization Methods Explained

YouTube video thumbnail

How do you choose the right medical device sterilization method? In this episode of MedDevice by Design, Ariana and Mark walk through FDA-approved options and explain how to select the right one for your product. From metals to plastics and electronics, not all devices can handle the same process.

Choosing the Right Method

The most common method is steam sterilization using an autoclave. This works well for metal tools like scalpels and orthopedic instruments. However, high heat can damage plastics, so it’s not always the best option.

For heat-sensitive components, ethylene oxide (ETO) is often used. It works at low temperatures, but requires long turnaround times and has safety concerns due to its carcinogenic nature.

Alternatives to ETO

Because of the risks with ETO, many facilities are moving to vaporized hydrogen peroxide plasma. It’s safer for staff and just as effective for sterilizing low-temperature devices. The FDA is also encouraging this transition.

Radiation is another solution. Gamma and E-beam sterilization are fast and effective, but typically only available at large, centralized facilities due to safety requirements.

What About Electronics?

Electronics present a special challenge. They often can’t handle heat or moisture. Designers must plan ahead, choosing components and layouts that limit the number of parts needing sterilization. Sometimes, only patient-contacting elements are sterilized.

If no standard option works, novel sterilization methods are allowed—but require thorough validation. You must prove the method is both effective and repeatable.

Understanding medical device sterilization helps ensure safety, performance, and compliance. Selecting the right method early can save time and cost in development.

Nick from StarFish Medical demonstrating antigen detection using a toy antibody model to explain how monoclonal antibodies bind antigens in ELISA diagnostics

Nick and Nigel break down the ELISA assay explained in simple, practical terms using everyday models.

Magnifying glass revealing cracks with the text “This gets missed,” illustrating hidden risks in medical device validation and real-world use.

Ariana Wilson sits down with Mark Drlik to unpack why reprocessing is often one of the hardest challenges engineers face during development.

Thumbnail showing the text “ETO or Radiation?” with a cloud icon representing ethylene oxide sterilization and a radiating burst icon representing radiation sterilization for medical devices.

Nick and Nigel walk through how teams decide between ethylene oxide, E-beam, and gamma radiation sterilization.

Medical device pilot manufacturing workspace showing engineers supporting NPI and scalable production

In MedTech, success rarely comes from invention alone. Plenty of promising technologies make it through verification and early clinical work, only to stall when the team tries to turn them into something buildable.