Resource Centre

Discover a wealth of knowledge and insights from the experts at StarFish Medical. Our Resource Centre offers product development tips, reviews of new and cutting-edge technologies, and in-depth articles on regulatory updates and compliance in medical device development.

Archive Filters
Actions
  • Two men sit at a table in a discussion, with one holding a frozen soda can. The background features a whiteboard with faint writing, and snowflake graphics are scattered around the image. The text overlay reads, "The Science of Freezing Cells" in bold black and purple letters.

    Cryopreservation is essential in biological research, regenerative medicine, and stem cell therapies. But freezing biological materials isn’t as simple as placing them in a freezer. Nick and Joris dive into this fascinating process in this episode of Bio Break, using a real-world example—Nick’s frozen beverage can, which burst due to water expansion.

  • Two men sit at a table discussing glucose monitors, with the text "How Glucose Monitors Really Work" overlaid on the image. One man gestures while speaking, and both have coffee mugs labeled with their names. The background features a whiteboard with blurred writing.

    Continuous glucose monitors (CGMs) are revolutionizing how people track blood sugar levels in real time. But how do they work, and where exactly do they measure glucose? Nick and Joris explore the science behind CGMs, explaining the difference between blood glucose monitoring and interstitial fluid measurement.

  • Common Mistakes for Medical Device Projects A businessman wearing a blue suit and an orange tie is pointing at a transparent virtual interface with hexagonal icons. The central hexagon displays the words "REGULATORY COMPLIANCE." Surrounding it are four smaller hexagons with white icons, including a scale inside a gear (symbolizing legal and ethical standards), a stack of binders (representing documentation), a checklist (indicating compliance requirements), and a person next to a legal symbol (denoting regulatory oversight). The background is blurred with a brick wall visible.

    Common mistakes in medical device projects can create roadblocks that, if left unchecked, can snowball into costly setbacks.

  • Two men sit at a table discussing the science behind freeze-drying. One of them holds a jar of freeze-dried coffee, illustrating the topic. The text overlay reads "The Science Behind Freeze Drying" in bold letters. A whiteboard with diagrams is visible in the background, reinforcing the technical discussion.

    Nick and Joris dive into the fascinating world of freeze-drying, exploring how this process extends shelf life and maintains the integrity of various products—including reagents used in in vitro diagnostics and even instant coffee!

  • Two men, Nick and Joris, are seated at a table, engaged in a discussion. Both are wearing checkered shirts and have coffee mugs with their names on them. The background features a whiteboard with faint blue writing. The text overlay reads "Imaging for Targeted Drug Delivery" in bold, purple and black letters. The setting resembles a laboratory or office environment.

    In this episode of Bio Break, Nick and Joris discuss the fascinating world of real-time imaging for targeted drug delivery. When delivering drugs to precise locations in the body, how do we ensure they reach the right spot? The answer lies in medical imaging technologies such as MRI, CT, and ultrasound, which play a crucial role in guiding complex drug delivery devices.

  • packaging plant line and signal.

    ASTM D4169 is a standard test method for performance testing of shipping containers and packaging systems. It evaluates the ability of shipping units to withstand the expected distribution environment. FDA recognizes it as a consensus standard as part of sterility testing that is commonly applied to all sorts of medical devices.

  • What are the most important medical device success factors during development and manufacturing? StarFish employees from QA/RA, NPI, Optics, Computational Analysis, Project Management and Manufacturing answer that question with the factors they deem most important for their area of expertise.

  • Close-up of a printed circuit board (PCB) with multiple connectors, sensors, and electronic components. The board has a purple solder mask with various capacitors, resistors, and ICs mounted. Colored caps on the connectors indicate different sensor inputs, with red and white wires attached. Visible traces and test points suggest a complex design, likely for a medical or industrial application.

    Getting a PCB (Printed Circuit Board) for a medical device right the first time is almost impossible. Datasheets can be misleading, or assumptions and architectures change. As a result, modifications are almost inevitable. Sometimes the modification is as simple as swapping resistors or adding capacitors. Other times it involves tacking on new circuits you had no idea you needed.

  • This blog explores key highlights of the Chemical Analysis for Biocompatibility Assessment of Medical Devices draft guidance, focusing on its scope, testing methodologies, and recommendations for reporting. In September 2024, the U.S. Food and Drug Administration (FDA) issued a draft guidance titled Chemical Analysis for Biocompatibility Assessment of Medical Devices.