Resource Centre

Discover a wealth of knowledge and insights from the experts at StarFish Medical. Our Resource Centre offers product development tips, reviews of new and cutting-edge technologies, and in-depth articles on regulatory updates and compliance in medical device development.

Archive Filters
Actions
  • Alt text: A promotional graphic from StarFish Medical featuring the title "Pre-Clinical Lessons We Wish We’d Known" in bold purple and lavender text. Below the title are headshots of three team members: Joris van der Heijden (Concept Development Lead), Paul Hulme (Human Factors Engineer), and Nick Allan (Bio Services Manager), with their names and titles displayed above each photo. The StarFish Medical logo is placed in the top left corner.

    Pre-clinical studies and early-stage trials are some of the most challenging — and expensive — milestones in medical device development. Yet, many teams encounter avoidable setbacks that could have been prevented with strategic foresight and practical lessons learned from experience.

  • Two men sit at a table in a discussion, with one holding a frozen soda can. The background features a whiteboard with faint writing, and snowflake graphics are scattered around the image. The text overlay reads, "The Science of Freezing Cells" in bold black and purple letters.

    Cryopreservation is essential in biological research, regenerative medicine, and stem cell therapies. But freezing biological materials isn’t as simple as placing them in a freezer. Nick and Joris dive into this fascinating process in this episode of Bio Break, using a real-world example—Nick’s frozen beverage can, which burst due to water expansion.

  • Two men sit at a table discussing glucose monitors, with the text "How Glucose Monitors Really Work" overlaid on the image. One man gestures while speaking, and both have coffee mugs labeled with their names. The background features a whiteboard with blurred writing.

    Continuous glucose monitors (CGMs) are revolutionizing how people track blood sugar levels in real time. But how do they work, and where exactly do they measure glucose? Nick and Joris explore the science behind CGMs, explaining the difference between blood glucose monitoring and interstitial fluid measurement.

  • Two men sit at a table discussing the science behind freeze-drying. One of them holds a jar of freeze-dried coffee, illustrating the topic. The text overlay reads "The Science Behind Freeze Drying" in bold letters. A whiteboard with diagrams is visible in the background, reinforcing the technical discussion.

    Nick and Joris dive into the fascinating world of freeze-drying, exploring how this process extends shelf life and maintains the integrity of various products—including reagents used in in vitro diagnostics and even instant coffee!

  • Two men, Nick and Joris, are seated at a table, engaged in a discussion. Both are wearing checkered shirts and have coffee mugs with their names on them. The background features a whiteboard with faint blue writing. The text overlay reads "Imaging for Targeted Drug Delivery" in bold, purple and black letters. The setting resembles a laboratory or office environment.

    In this episode of Bio Break, Nick and Joris discuss the fascinating world of real-time imaging for targeted drug delivery. When delivering drugs to precise locations in the body, how do we ensure they reach the right spot? The answer lies in medical imaging technologies such as MRI, CT, and ultrasound, which play a crucial role in guiding complex drug delivery devices.

  • Two professionals discussing strategies for repurposing medical devices into new market sectors, sitting at a table with mugs featuring their names (Nick and Joris) and a star logo. The background is a blurred office or laboratory setting. The overlay text reads, 'New Markets Ahead! Repurposing Medical Devices,' in bold purple and black fonts, emphasizing innovation and market expansion.

    Nick and Joris explore the fascinating world of repurposing existing medical device technologies for new market sectors. As engineers and innovators, we often focus on creating brand-new solutions, but what about leveraging tried-and-true technologies to expand into untapped markets? This strategy not only opens doors to new revenue streams but also maximizes the potential of existing innovations.

  • A promotional graphic from StarFish Medical featuring the title "Grand Challenges in Neuroscience: Solving mysteries of the human brain with drug delivery" in bold purple text. On the right side is a photo of Dr. Jacob Hooker, identified as a Professor of Radiology at Harvard Medical School. The StarFish Medical logo appears in the top left corner on a white background.

    In the webinar "Grand Challenges in Neuroscience" from January 21, 2025, Dr. Jacob Hooker, Lurie Family Professor of Radiology and Scientific Director at the Lurie Center for Autism at Massachusetts General Hospital, joins Nick Allan, Bio Services Manager at StarFish Medical, to discuss some of the biggest hurdles in neuroscience today. The conversation explores the complex interplay between chemistry, biology, and medical device engineering, offering insights into the latest innovations in neurotherapeutics, molecular imaging, and non-invasive drug delivery technologies.

  • Two professionals engaged in a discussion at a wooden table in a laboratory setting, with the text 'How to Target Drug Delivery' prominently displayed above them. One participant wears a plaid shirt, while the other dons a checkered shirt, and both have coffee mugs featuring their names. The background showcases a blurred laboratory environment, adding a professional and scientific atmosphere to the scene.

    In this episode of Bio Break, Nick Allan and Joris van der Heijden tackle the fascinating challenge of targeted drug delivery. When administering drugs to specific areas in the body, how can we be certain they reach the intended target? Nick shares an exciting example involving an intranasal device designed to deliver drugs precisely to the olfactory cleft—an area located between the eyes.

  • Two individuals sit at a wooden table in a bright laboratory setting, deeply engaged in discussion. One person gestures animatedly, emphasizing a point, while the other listens intently, with a notebook open in front of them. Both have mugs on the table labeled with their names, adding a personal touch. The text overlay reads 'Shear Stress: Risks & Solutions' in bold and engaging typography, with the backdrop of lab equipment creating a professional yet approachable atmosphere.

    Nick Allan and Joris van der Heijden dive into a critical concept in drug delivery and biopharmaceutical development: shear stress. Understanding shear stress, especially when dealing with delicate therapies like cell and gene treatments or mRNA vaccines, can have profound effects on drug viability and efficacy. Nick walks us through how shear stress is identified, measured, and mitigated during product design and development.