Resource Centre

Discover a wealth of knowledge and insights from the experts at StarFish Medical. Our Resource Centre offers product development tips, reviews of new and cutting-edge technologies, and in-depth articles on regulatory updates and compliance in medical device development.

Archive Filters
Actions
  • Two men, Nick and Joris, are seated at a table, engaged in a discussion. Both are wearing checkered shirts and have coffee mugs with their names on them. The background features a whiteboard with faint blue writing. The text overlay reads "Imaging for Targeted Drug Delivery" in bold, purple and black letters. The setting resembles a laboratory or office environment.

    In this episode of Bio Break, Nick and Joris discuss the fascinating world of real-time imaging for targeted drug delivery. When delivering drugs to precise locations in the body, how do we ensure they reach the right spot? The answer lies in medical imaging technologies such as MRI, CT, and ultrasound, which play a crucial role in guiding complex drug delivery devices.

  • packaging plant line and signal.

    ASTM D4169 is a standard test method for performance testing of shipping containers and packaging systems. It evaluates the ability of shipping units to withstand the expected distribution environment. FDA recognizes it as a consensus standard as part of sterility testing that is commonly applied to all sorts of medical devices.

  • What are the most important medical device success factors during development and manufacturing? StarFish employees from QA/RA, NPI, Optics, Computational Analysis, Project Management and Manufacturing answer that question with the factors they deem most important for their area of expertise.

  • Close-up of a printed circuit board (PCB) with multiple connectors, sensors, and electronic components. The board has a purple solder mask with various capacitors, resistors, and ICs mounted. Colored caps on the connectors indicate different sensor inputs, with red and white wires attached. Visible traces and test points suggest a complex design, likely for a medical or industrial application.

    Getting a PCB (Printed Circuit Board) for a medical device right the first time is almost impossible. Datasheets can be misleading, or assumptions and architectures change. As a result, modifications are almost inevitable. Sometimes the modification is as simple as swapping resistors or adding capacitors. Other times it involves tacking on new circuits you had no idea you needed.

  • This blog explores key highlights of the Chemical Analysis for Biocompatibility Assessment of Medical Devices draft guidance, focusing on its scope, testing methodologies, and recommendations for reporting. In September 2024, the U.S. Food and Drug Administration (FDA) issued a draft guidance titled Chemical Analysis for Biocompatibility Assessment of Medical Devices.

  • Two professionals discussing strategies for repurposing medical devices into new market sectors, sitting at a table with mugs featuring their names (Nick and Joris) and a star logo. The background is a blurred office or laboratory setting. The overlay text reads, 'New Markets Ahead! Repurposing Medical Devices,' in bold purple and black fonts, emphasizing innovation and market expansion.

    Nick and Joris explore the fascinating world of repurposing existing medical device technologies for new market sectors. As engineers and innovators, we often focus on creating brand-new solutions, but what about leveraging tried-and-true technologies to expand into untapped markets? This strategy not only opens doors to new revenue streams but also maximizes the potential of existing innovations.

  • Two professionals engaged in a discussion at a wooden table in a laboratory setting, with the text 'How to Target Drug Delivery' prominently displayed above them. One participant wears a plaid shirt, while the other dons a checkered shirt, and both have coffee mugs featuring their names. The background showcases a blurred laboratory environment, adding a professional and scientific atmosphere to the scene.

    In this episode of Bio Break, Nick Allan and Joris van der Heijden tackle the fascinating challenge of targeted drug delivery. When administering drugs to specific areas in the body, how can we be certain they reach the intended target? Nick shares an exciting example involving an intranasal device designed to deliver drugs precisely to the olfactory cleft—an area located between the eyes.

  • Medical Device Resolutions This image features a notepad with "2025" written boldly at the top, accompanied by a checklist containing three checked boxes. Nearby, there is a pair of eyeglasses, a cup of coffee, a pen, and a calculator, all arranged on a wooden table.

    Medical Device Commercialization Resolutions include Improved communications, aligning goals, using new tools, going paperless

  • Two individuals sit at a wooden table in a bright laboratory setting, deeply engaged in discussion. One person gestures animatedly, emphasizing a point, while the other listens intently, with a notebook open in front of them. Both have mugs on the table labeled with their names, adding a personal touch. The text overlay reads 'Shear Stress: Risks & Solutions' in bold and engaging typography, with the backdrop of lab equipment creating a professional yet approachable atmosphere.

    Nick Allan and Joris van der Heijden dive into a critical concept in drug delivery and biopharmaceutical development: shear stress. Understanding shear stress, especially when dealing with delicate therapies like cell and gene treatments or mRNA vaccines, can have profound effects on drug viability and efficacy. Nick walks us through how shear stress is identified, measured, and mitigated during product design and development.