Resource Centre

Discover a wealth of knowledge and insights from the experts at StarFish Medical. Our Resource Centre offers product development tips, reviews of new and cutting-edge technologies, and in-depth articles on regulatory updates and compliance in medical device development.

Archive Filters
Actions
  • Three team members collaborating at a workstation in a modern office environment. One person in a blue shirt is pointing at a computer screen displaying a colorful 3D model, while another operates the mouse. The workspace features a green wall, shelving with supplies, and a small plant on the desk, creating a dynamic and engaging atmosphere.

    Fluid-structure interaction (FSI) modeling is transforming the medical device industry by simulating complex dynamics between biological fluids and medical devices. In a field where safety and precision are paramount, FSI modeling offers engineers and researchers a powerful tool to design, test, and optimize devices in a virtual environment before physical prototypes are created or clinical trials are conducted. 

  • Two laboratory professionals in cleanroom attire, including hair covers, masks, and gloves, working in a high-tech lab. One person is using a microscope at a workstation, while the other operates a machine in the background. The environment is clean and well-organized, featuring advanced scientific equipment and tools.

    Cleanroom best practices are crucial to maintain a contamination-free environment, especially in industries like pharmaceuticals, semiconductors, biotechnology, healthcare, and medical devices. Here are some essential guidelines for ensuring your cleanroom is indeed clean.

  • A team of professionals sitting in a conference room, engaged in a discussion. A large screen displays a colorful 3D design, while a whiteboard on the wall shows notes and diagrams. The table is equipped with laptops, notepads, and engineering tools, emphasizing a collaborative work environment.

    Medical device design transfer is a critical phase in the development process, marking the transitory phase from the design and development stage to manufacturing.  This phase ensures that the medical device continues to meet its safety, effectiveness, and regulatory compliance once production begins.  It is the final phase in the development process and sometimes overlooks or underestimates the amount of time and effort required to ensure that final manufactured devices meet requirements. 

  • Laboratory setting with test tubes and beakers, overlaid with futuristic medical and scientific icons, representing biotechnology and data-driven research.

    Systems-thinking must always be present in medical device development. Systems Engineers (SEs) live where complex development needs managing. In a very small project team people can communicate continuously and tightly enough that everybody understands where they’re headed and what’s going on.

  • Two professionals wearing festive New Year’s accessories sit against a backdrop of fireworks. The text overlay reads "New Year Big Win: 20 Years in the Making!" emphasizing the celebration of a long-awaited achievement.

    In this special New Year’s episode of Bio Break, Joris van der Heijden and Nick Allan reflect on resolutions, persistence, and a 20-year journey to establish a new standard for biofilm testing in medical devices. Nick shares the story of his two-decade-long mission to develop a standardized test method for growing and monitoring biofilm on medical device surfaces.

  • Two professionals wearing festive holiday hats and plaid shirts sit in a snowy winter-themed setting. The text overlay reads "Santa's Health: A Medical Device Makeover," highlighting a playful discussion on medical innovations and healthcare improvements.

    In this festive episode of Bio Break, Joris and Nick bring a holiday twist to medical device innovation by discussing how modern technology could improve Santa’s health. Using a lighthearted analogy, they explore the challenges of managing conditions like diabetes and how advancements in drug delivery devices, such as Ozempic injection systems, could make a difference.

  • Two professionals in plaid shirts and microphones have a discussion in a laboratory setting. The text overlay reads "Microbes: Hidden Heroes of Medicine," emphasizing the role of microorganisms in medical advancements.

    In this episode of Bio Break, Joris and Nick explore the fascinating ways microbes and nature inspire medical innovations, showing how these tiny organisms play an outsized role in advancing healthcare and biotechnology. From lifesaving antibiotics like penicillin to revolutionary technologies like CRISPR-Cas9, they dive deep into the surprising and transformative contributions of microbes to medicine, shedding light on their critical role in shaping modern science and improving patient outcomes.

  • Open book on old wooden table

    22 Favorite Books in 2024 continues a StarFish Medical tradition since 2021 where employees share their favorite reads of the year.

  • Two professionals wearing plaid shirts and microphones engage in a discussion in a laboratory setting. The text overlay reads "Designing SAFE Drug Delivery Systems," emphasizing the focus on precision and safety in medical device design.

    In this episode of Bio Break, Joris van der Heijden and Nick Allan explore one of the most critical challenges in drug delivery device design: shear stress. When designing systems for biologics and gene therapies, avoiding shear stress is essential to ensure the viability and activity of biomolecules like proteins, antibodies, and viruses.