Jet Injector Drug Delivery: Promise and Pitfalls

Two men, Nick A. (left) and Nigel (right), sit at a white table, engaging in a lively and friendly conversation. Both wear checkered shirts and lavalier microphones, suggesting a filmed discussion or interview. Nick holds tissue samples in one hand and gestures animatedly, while Nigel smiles in response. Each has a white mug labeled with their name and a purple star logo. The background is a bright white, creating a clean and professional studio setting.
Resources

Jet Injector Drug Delivery: Promise and Pitfalls

Topic: Bio Break
YouTube video thumbnail

In this episode of Bio Break, Nick and Nigel dive into the world of jet injector drug delivery. This needle-free method, made popular in science fiction and real-world vaccines, is still used today. But while the idea of a high-pressure, pain-free injection sounds ideal, the conversation uncovers key limitations.

What Is a Jet Injector?

Jet injectors deliver drugs by forcing liquid medication through the skin using high pressure, eliminating the need for a needle. That pressure forms a thin stream that penetrates the skin, ideally resulting in less pain than traditional injections. The technology has been around since the 1960s and remains popular in certain applications.

Less Pain, More Problems?

While jet injector drug delivery may reduce pain, Nigel highlights concerns. The high pressure can cause side spray, potentially wasting expensive medications. There’s also the risk of cross-contamination, especially when parts of the injector are reused. Additionally, some advanced drugs—like those using lipid nanoparticles for mRNA vaccines—may be incompatible due to shear forces that can damage sensitive payloads.

Why Jet Injectors Are Still Around

Despite the challenges, jet injectors offer clear benefits in usability. They provide a quick, needle-free option that appeals to patients and practitioners alike. However, understanding their limitations is key to deciding when they’re the right tool for the job.

Diagram showing medical device at the center connected to clinicians, patients, and regulatory bodies with text 'Who are we designing for?' highlighting stakeholder mapping in MedTech design.

Every phase of a device’s life cycle involves different people with distinct needs—from clinicians and patients to service technicians and regulatory bodies.

A fluorescent protein assay sample glows under UV light as part of medical device cleaning validation testing.

Nick Allan and Nigel Syrotuck explain how a fluorescent protein assay helps engineers measure contamination and cleaning performance in medical devices.

Engineer assembling electronic components during medical device design transfer process.

Your team is ready for design validation. The prototype performs well, test plans are in motion, and everything points to a smooth handoff to manufacturing. Then your partner calls with bad news: they can’t build the device as designed.

Contract Manufacturer Rejection - Engineering team reviews early-stage medical device design and manufacturability during a design transfer meeting at StarFish Medical.

You’ve cleared the toughest engineering hurdles and proven your design works. Then, just as you prepare to scale, your contract manufacturer turns you down.