Accommodative Intraocular Lens Technology Explained

MedDevice by Design with Mark Drlik and Ariana Wilson
Resources

Accommodative Intraocular Lens Technology Explained

YouTube video thumbnail

In this episode of MedDevice by Design, Ariana and Mark explore how accommodative intraocular lens technology may one day restore natural vision for people who require cataract surgery or suffer from presbyopia. As Mark shares, traditional bifocals are not ideal, and new lens solutions may offer better outcomes.

What Is an Accommodative Intraocular Lens?

When cataract surgery is performed, the natural lens of the eye is typically replaced with a hard plastic lens. Unfortunately, this artificial lens lacks the ability to focus on both near and far objects. An accommodative intraocular lens seeks to solve this problem by mimicking the eye’s natural focusing ability. The lens responds to the eye’s ciliary muscles, allowing it to adjust its shape and focal distance, similar to a healthy, youthful eye.

The Challenge of Developing These Lenses

Currently, most accommodative lenses on the market fall short of fully restoring accommodation. Mark mentions products like Crystalens, which offer some adjustment but not enough for full reading and distance vision without glasses. For many patients, achieving about 1.5 diopters of accommodation is still a challenge. This technical hurdle makes developing a truly effective accommodative intraocular lens complex.

Market Demand and Development Pipeline

As discussed, the market for intraocular lens implants is large and well-established, creating a strong business case. Several companies are actively working on next-generation accommodative intraocular lenses. Mark mentions companies like LensGen, JellySea, Omniview, FluidVision, Synchrony, and TiaVision, all working through clinical studies. However, none have reached full FDA clearance yet.

Why This Lens Technology Matters

Accommodative intraocular lenses offer significant potential to improve quality of life for millions of patients who want to reduce or eliminate their dependence on glasses after cataract surgery. While regulatory pathways and technical feasibility remain hurdles, these emerging devices continue to generate strong interest across the ophthalmology community.

Nick from StarFish Medical demonstrating antigen detection using a toy antibody model to explain how monoclonal antibodies bind antigens in ELISA diagnostics

Nick and Nigel break down the ELISA assay explained in simple, practical terms using everyday models.

Magnifying glass revealing cracks with the text “This gets missed,” illustrating hidden risks in medical device validation and real-world use.

Ariana Wilson sits down with Mark Drlik to unpack why reprocessing is often one of the hardest challenges engineers face during development.

Thumbnail showing the text “ETO or Radiation?” with a cloud icon representing ethylene oxide sterilization and a radiating burst icon representing radiation sterilization for medical devices.

Nick and Nigel walk through how teams decide between ethylene oxide, E-beam, and gamma radiation sterilization.

Medical device pilot manufacturing workspace showing engineers supporting NPI and scalable production

In MedTech, success rarely comes from invention alone. Plenty of promising technologies make it through verification and early clinical work, only to stall when the team tries to turn them into something buildable.