Understanding Endoscope Reprocessing

Ariana Wilson and Mark Drlik seated against a white background, wearing lavalier microphones. The woman on the left has long brown curly hair and is wearing a beige cardigan over a taupe top. The man on the right is wearing glasses and a blue button-up shirt. They appear to be engaged in conversation or a video interview.
Resources

Understanding Endoscope Reprocessing

Sector: Diagnostics

In this episode of MedDevice by Design, Ariana and Mark examine the complexities of endoscope reprocessing, one of the most difficult tasks in medical device hygiene. These devices contain intricate internal channels and delicate mechanisms that make both cleaning and disinfection incredibly labor-intensive. With endoscopes routinely used in clinical settings, ensuring they are safe to reuse is critical for patient safety and operator health.

Why Endoscopes Are So Hard to Clean

Mark explains that endoscopes are inserted into particularly contaminated environments and are often constructed from materials that cannot withstand high temperatures. This makes steam sterilization ineffective. Instead, hospitals rely on high-level disinfection—an extensive manual and automated cleaning process that includes enzymatic scrubbing, flushing internal ports, leak testing, and finally, drying and hanging.

Innovations in Endoscope Cleaning

To streamline this complex process, manufacturers have developed new automated solutions. The Steris Inspire 300, for instance, eliminates the need for manual cleaning between bedside wipe-down and automated disinfection. Other innovations include the Pentax Aqua Typhoon and Nanosonics Coris, which use entrapped bubbles or pulsatile flow to clean hard-to-reach channels. These advances aim to reduce the physical burden on staff while improving the reliability of endoscope reprocessing outcomes.

Is It Really Safe?

While current reprocessing methods report an adverse event rate of just 1 in 1.8 million, the challenge lies in consistent execution. Missed steps and usability challenges can introduce risk, despite the devices being considered technically safe. That’s why innovations in automated systems are so important—they minimize human error and optimize hygiene.

Explore more in this in-depth episode on one of the most underappreciated challenges in medtech cleaning protocols.

Correction: In this episode, we mistakenly refer to the Steris Inspire 3000 as the “Steris Inspire 300.” The correct name is Steris Inspire 3000. We apologize for the oversight.

A healthcare professional in a sterile gown and gloves holds an endoscope, with a red arrow pointing toward the device. Beside it, a handheld cleaning brush is shown, symbolizing the manual cleaning process. Text overlay reads “Not sterile. Just safe?”

Ariana and Mark examine the complexities of endoscope reprocessing, one of the most difficult tasks in medical device hygiene.

Technician operating a custom aluminum-framed drop test rig with a white platform and green background wall.

Medical device drop testing helps ensure that products and packaging survive real-world handling. We demonstrate in-house drop testing on an actual device and its packaging using a custom-built drop tester.

Balancing the needs of startup and enterprise medical device partners in CDMO projects.

Medical device startups/founders and enterprise partners have unique strengths and goals, which are often reflected in the way they work with CDMO (Contract Development and Manufacturing Organizations) partners.

Technician using digital calipers to validate component dimensions during medical device testing.

In the highly regulated world of medical device development, ensuring product safety, quality, and compliance is essential. One critical yet often overlooked aspect of this process is test method validation (TMV) in medical device development.