Understanding Endoscope Reprocessing

Ariana Wilson and Mark Drlik seated against a white background, wearing lavalier microphones. The woman on the left has long brown curly hair and is wearing a beige cardigan over a taupe top. The man on the right is wearing glasses and a blue button-up shirt. They appear to be engaged in conversation or a video interview.
Resources

Understanding Endoscope Reprocessing

Sector: Diagnostics
YouTube video thumbnail

In this episode of MedDevice by Design, Ariana and Mark examine the complexities of endoscope reprocessing, one of the most difficult tasks in medical device hygiene. These devices contain intricate internal channels and delicate mechanisms that make both cleaning and disinfection incredibly labor-intensive. With endoscopes routinely used in clinical settings, ensuring they are safe to reuse is critical for patient safety and operator health.

Why Endoscopes Are So Hard to Clean

Mark explains that endoscopes are inserted into particularly contaminated environments and are often constructed from materials that cannot withstand high temperatures. This makes steam sterilization ineffective. Instead, hospitals rely on high-level disinfection—an extensive manual and automated cleaning process that includes enzymatic scrubbing, flushing internal ports, leak testing, and finally, drying and hanging.

Innovations in Endoscope Cleaning

To streamline this complex process, manufacturers have developed new automated solutions. The Steris Inspire 300, for instance, eliminates the need for manual cleaning between bedside wipe-down and automated disinfection. Other innovations include the Pentax Aqua Typhoon and Nanosonics Coris, which use entrapped bubbles or pulsatile flow to clean hard-to-reach channels. These advances aim to reduce the physical burden on staff while improving the reliability of endoscope reprocessing outcomes.

Is It Really Safe?

While current reprocessing methods report an adverse event rate of just 1 in 1.8 million, the challenge lies in consistent execution. Missed steps and usability challenges can introduce risk, despite the devices being considered technically safe. That’s why innovations in automated systems are so important—they minimize human error and optimize hygiene.

Explore more in this in-depth episode on one of the most underappreciated challenges in medtech cleaning protocols.

Correction: In this episode, we mistakenly refer to the Steris Inspire 3000 as the “Steris Inspire 300.” The correct name is Steris Inspire 3000. We apologize for the oversight.

Futuristic laboratory with multiple glowing blue cylindrical tanks emitting mist. A red arrow points to one tank. Overlay text reads: ‘Bacta tank. For real?’ in bold white letters on a black background.

Ariana Wilson and Mark Drlik take inspiration from a scene in The Empire Strikes Back to talk about real-world parallels to the Star Wars bacta tank.

A medical professional wearing a white coat and blue gloves holds a red cooler labeled ‘Organ Transport.’ Overlay text reads: ‘The call came’ in bold black letters on a white highlight.

In this Before the Build episode, Eric Olson and Paul Charlebois dive into the importance of organ transplant logistics when designing effective medical devices.

A vial of orange liquid with a radiation symbol and a syringe sit on a reflective metal surface in front of a large medical imaging machine. The overlay text reads: "Radioactive. On Purpose?" in bold black font on a white rounded background.

Radiopharmaceutical device development is gaining momentum as medical teams explore new frontiers in diagnostic imaging and cancer treatment.

Surgeon practicing on a surgical simulator during a medical training session in a clinical environment

The simplest and least expensive way to train users of medical devices is to ask them study the Instructions for Use (IFU) beforehand.